Molecular anatomy of the alkaliphilic xylanase from Bacillus halodurans C-125.

Abstract

Two regions in xylanase A from Bacillus halodurans C-125 (XynA), an alkaliphilic xylanase, were identified to be responsible for its activity at basic pH by comparing the dissociation constants of the XynA proton donor Glu residue (pK(e2) and pK(es2)) with those of xylanase B from Clostridium stercorarium F9 (XynB) and their mutants constructed by substituting either Ser137/Asn127 of XynA/XynB or the 4th loop, designed based on the structural difference close to the proton donor. The substitution of XynB at Asn127 into Ser increased pK(e2) by 0.37. The effect is explained that the positive charge of His126 likely affects the proton donor via Asn127 and a water molecule in XynB, resulting in a decrease in pK(e2), whereas such interactions were not observed with Ser. The substitution of XynB at the 4th loop into XynA (XynB Loop4A) increased the pK(e2) and pK(es2) values by 0.29 and 0.62, respectively. The effect of the 4th loop in XynA is likely due to a hydrogen bond between Asp199 in the loop and Tyr239, which interacts with both the proton donors Glu195 and Arg204, with flexibility of the loop. Both the mutations independently affected the increases in pK(e2).

Statistics

0501001502008200920102011201220132014201520162017
Citations per Year

59 Citations

Semantic Scholar estimates that this publication has 59 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Nishimoto2007MolecularAO, title={Molecular anatomy of the alkaliphilic xylanase from Bacillus halodurans C-125.}, author={Mamoru Nishimoto and Shinya Fushinobu and Akimasa Miyanaga and Motomitsu Kitaoka and Kiyoshi Hayashi}, journal={Journal of biochemistry}, year={2007}, volume={141 5}, pages={709-17} }