Moduli of J-holomorphic Curves with Lagrangian Boundary Conditions and Open Gromov-witten Invariants for an S-equivariant Pair

@inproceedings{Liu2008ModuliOJ,
  title={Moduli of J-holomorphic Curves with Lagrangian Boundary Conditions and Open Gromov-witten Invariants for an S-equivariant Pair},
  author={Chiu-Chu Melissa Liu},
  year={2008}
}
Let (X, ω) be a symplectic manifold, J be an ω-tame almost complex structure, and L be a Lagrangian submanifold. The stable compactification of the moduli space of parametrized J-holomorphic curves in X with boundary in L (with prescribed topological data) is compact and Hausdorff in Gromov’s C∞-topology. We construct a Kuranishi structure with corners in the sense of Fukaya and Ono. This Kuranishi structure is orientable if L is spin. In the special case where the expected dimension of the… CONTINUE READING
Highly Cited
This paper has 22 citations. REVIEW CITATIONS

References

Publications referenced by this paper.
Showing 1-10 of 34 references

Complex manifolds and deformation of complex structures

K. Kodaira
Grundlehrender Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 283. Springer-Verlag, New York • 1986
View 5 Excerpts
Highly Influenced

Über Realitätsverhältnisse bei der einem beliebigen Geschlechte zugehörigen Normalkurve der φ

F. Klein
Math. Ann., Vol. 42 • 1892
View 6 Excerpts
Highly Influenced

Disc Instantons, Mirror Symmetry, and the Duality Web, Z

M. Aganagic, A. Klemm, C. Vafa
Naturforsch. A • 2002

Shevchishin, Reflection principle and J-complex curves with boundary on totally real immersions

V. S. Ivashkovich
Commun. Contemp. Math • 2002

Similar Papers

Loading similar papers…