36 Citations
ESSENTIALLY RETRACTABLE MODULES
- Mathematics
- 2007
We call a module R M essentially retractable if HomR( ) ,0 MN ≠ for all essential submodules N of M. For a right FBN ring R, it is shown that: (i) A nonzero module R M is retractable (in the sense…
WEAK GENERATORS FOR CLASSES OF R-MODULES
- Mathematics
- 2006
Let R be a ring. An R-module M is called a weak generator for a class C of R-modules if Hom_R(M,V) is non-zero for every non-zero module V in C. A projective module M is a weak generator for C if and…
Rings whose non-zero finitely generated modules are retractable
- Mathematics
- 2005
We give several equivalent formulations of a finite retractable ring which is defined to be a ring R, all of whose non-zero finitely generated (right) modules M are retractable, in the sense that…
RINGS WITH ALL FINITELY GENERATED MODULES RETRACTABLE
- Mathematics
- 2009
Several characterizations of a ring R is given for which any non-zero finitely generated module M is retractable in the sense that HomR(M,N) is non-zero whenever N is a non-zero submodule of M. Such…
On rings whose modules have nonzero homomorphisms to nonzero submodules
- Mathematics
- 2013
We carry out a study of rings R for which HomR (M;N) 6= 0 for all nonzero N ≤ MR. Such rings are called retractable. For a retractable ring, Artinian condition and having Krull dimension are…
Applications of epi-retractable modules
- Mathematics
- 2012
An R-module M is called epi-retractable if every sub- module of MR is a homomorphic image of M. It is shown that if R is a right perfect ring, then every projective slightly compress- ible module MR…
EPI-Retractable Modules and Some Applications
- Mathematics
- 2009
Generalizing concepts "right Bezout " and "principal right ideal " of a ring R to modules, an R-module M is called n-epi- retractable (resp. epi-retractable) if every n-generated submodule (resp.…
Study of Subhomomorphic Property to a Ring
- Mathematics
- 2013
Let M and N be two non-zero right R-modules, M is called subhomomorphic to N in case there exist R homomorphisms f : M ! N, g : N ! M such that gof is non-zero, and M is called strongly…
BOUNDED AND FULLY BOUNDED MODULES
- MathematicsBulletin of the Australian Mathematical Society
- 2011
Abstract Generalizing the concept of right bounded rings, a module MR is called bounded if annR(M/N)≤eRR for all N≤eMR. The module MR is called fully bounded if (M/P) is bounded as a module over…
Some Results on C-retractable Modules
- Mathematics, Computer ScienceEuropean Journal of Pure and Applied Mathematics
- 2020
It is shown that every projective module over a right SI-ring is c-retractable and that a locally noetherian c- retractable module is homo-related to a direct sum of uniform modules.
References
SHOWING 1-10 OF 21 REFERENCES
Homological properties of the ring of differential polynomials
- Mathematics
- 1970
The ring of differential polynomials over a universal differential field (Kolchin [7]), and the ring of twisted polynomials F2[), p] , where F2 is an algebraic closure of Z /2Z and p is the…
ON LOEWY LENGTH OF RINGS
- Mathematics
- 1974
Associated with each ring R over which every nonzero right module has a minimal submodule is an ordinal number called its right (lower) Loewy length. The concern here is with the various possible…
Idempotent ideals and unions of nets of Prüfer domains
- Mathematics
- 1967
In this paper, all rings considered are assumed to be commutative rings with an identity element. It is known that an integral domain D may contain an idempotent proper ideal A. But when this occurs,…
Rings whose modules have maximal submodules
- Mathematics
- 1995
A ring $R$ is a right max ring if every right module $M\neq 0$ has at least one maximal submodule. It suffices to check for maximal submodules of a single module and its submodules in order to test…
An Introduction to Noncommutative Noetherian Rings
- Mathematics
- 1989
1. A few Noetherian rings 2. Skew polynomial rings 3. Prime ideals 4. Semisimple modules, Artinian modules, and torsionfree modules 5. Injective hulls 6. Semisimple rings of fractions 7. Modules over…
Foundations of module and ring theory
- Mathematics
- 1991
This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating…
Rings and Categories of Modules
- Mathematics
- 1974
This book is intended to provide a self-contained account of much of the theory of rings and modules. The theme of the text throughout is the relationship between the one-sided ideal structure a ring…
Rings over which every module has a maximal submodule
- Mathematics
- 1970
We consider Bass's hypothesis on perfect rings. For commutative rings the question is answered positively, which gives a new characterization of commutative perfect rings. An example is constructed…
Noncommutative Noetherian Rings
- Mathematics
- 2001
Articles on the history of mathematics can be written from many dierent perspectives. Some aim to survey a more or less wide landscape, and require the observer to watch from afar as theories develop…