Modelling the acoustics of a golf ball impacting a titanium plate


Finite element techniques are often applied to the design and development of golf clubs. While distance and accuracy are the primary design characteristics, the acoustics of the ball/club impact play an important role in player perception. Previous work has applied finite element techniques to predict the sound of a golf ball/club impact. This research helps to lay the foundations for implementing finite element techniques into the process of developing golf clubs which produce a perceived 'desirable' sound upon impact. This study investigates the application of Ansys/LS-Dyna to predict the frequency response of a golf ball impacting three cylindrical titanium plates of varying thickness. A golf ball was fired against each plate at 41 m/s and the sound was recorded using a microphone. Fast Fourier transformations were applied to the sound recordings to obtain the frequency modes. A finite element model was developed for each plate and acoustic simulations for ball/plate impacts were run using the Rayleigh method. Averaged across all three plates, the mean frequencies obtained from the impact simulations for the first two modes were within 3% of those measured experimentally. Further research could work towards applying the techniques presented here to a golf ball/club impact. © 2014 The Authors. Published by Elsevier Ltd. Selection and peer-review under responsibility of the Centre for Sports Engineering Research, Sheffield Hallam University.

Extracted Key Phrases

5 Figures and Tables

Cite this paper

@inproceedings{Allen2015ModellingTA, title={Modelling the acoustics of a golf ball impacting a titanium plate}, author={Tom Allen and Jim Gough and David Kon{\vc}an and Eric Morales and Paul Wood}, year={2015} }