Mitochondrial metabolic remodeling in response to genetic and environmental perturbations

Abstract

Mitochondria are metabolic hubs within mammalian cells and demonstrate significant metabolic plasticity. In oxygenated environments with ample carbohydrate, amino acid, and lipid sources, they are able to use the tricarboxylic acid cycle for the production of anabolic metabolites and ATP. However, in conditions where oxygen becomes limiting for oxidative phosphorylation, they can rapidly signal to increase cytosolic glycolytic ATP production, while awaiting hypoxia-induced changes in the proteome mediated by the activity of transcription factors such as hypoxia-inducible factor 1. Hypoxia is a well-described phenotype of most cancers, driving many aspects of malignancy. Improving our understanding of how mitochondria change their metabolism in response to this stimulus may therefore elicit the design of new selective therapies. Many of the recent advances in our understanding of mitochondrial metabolic plasticity have been acquired through investigations of cancer-associated mutations in metabolic enzymes, including succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. This review will describe how metabolic perturbations induced by hypoxia and mutations in these enzymes have informed our knowledge in the control of mitochondrial metabolism, and will examine what this may mean for the biology of the cancers in which these mutations are observed. WIREs Syst Biol Med 2016, 8:272-285. doi: 10.1002/wsbm.1334 For further resources related to this article, please visit the WIREs website.

DOI: 10.1002/wsbm.1334

Extracted Key Phrases

2 Figures and Tables

Statistics

0100020002017
Citations per Year

228 Citations

Semantic Scholar estimates that this publication has 228 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Hollinshead2016MitochondrialMR, title={Mitochondrial metabolic remodeling in response to genetic and environmental perturbations}, author={Kate E R Hollinshead and Daniel A Tennant}, booktitle={Wiley interdisciplinary reviews. Systems biology and medicine}, year={2016} }