Minimum ideal triangulations of hyperbolic 3-manifolds
@article{Adams1991MinimumIT, title={Minimum ideal triangulations of hyperbolic 3-manifolds}, author={Colin Adams and William Sherman}, journal={Discrete \& Computational Geometry}, year={1991}, volume={6}, pages={135-153} }
Let σ(n) be the minimum number of ideal hyperbolic tetrahedra necessary to construct a finite volumen-cusped hyperbolic 3-manifold, orientable or not. Let σor(n) be the corresponding number when we restrict ourselves to orientable manifolds. The correct values of σ(n) and σor(n) and the corresponding manifolds are given forn=1,2,3,4 and 5. We then show that 2n−1≤σ(n)≤σor(n)≤4n−4 forn≥5 and that σor(n)≥2n for alln.
12 Citations
Cusped hyperbolic 3-manifolds of complexity 10 having maximum volume
- Mathematics
- 2015
We give a complete census of orientable cusped hyperbolic 3-manifolds obtained by gluing at most ten regular ideal hyperbolic tetrahedra. Although the census is exhaustive, the question of…
Unions of $3$-punctured spheres in hyperbolic $3$-manifolds
- MathematicsCommunications in Analysis and Geometry
- 2021
We classify the topological types for the unions of the totally geodesic 3-punctured spheres in orientable hyperbolic 3-manifolds. General types of the unions appear in various hyperbolic…
The complement of the figure-eight knot geometrically bounds
- Mathematics
- 2015
We show that some hyperbolic 3-manifolds which are tessellated by copies of the regular ideal hyperbolic tetrahedron embed geodesically in a complete, finite volume, hyperbolic 4-manifold. This…
Symmetries of hyperbolic 4-manifolds
- Mathematics
- 2014
In this paper, for each finite group $G$, we construct explicitly a non-compact complete finite-volume arithmetic hyperbolic $4$-manifold $M$ such that $\mathrm{Isom}\,M \cong G$, or…
A census of cusped hyperbolic 3-manifolds
- MathematicsMath. Comput.
- 1999
The census contains descriptions of all hyperbolic 3-manifolds obtained by gluing the faces of at most seven ideal tetrahedra and various geometric and topological invariants are calculated for these manifolds.
Dehn Filling of the "Magic" 3-manifold
- Mathematics
- 2002
We classify all the non-hyperbolic Dehn fillings of the complement of the chain-link with 3 components, conjectured to be the smallest hyperbolic 3-manifold with 3 cusps. We deduce the classification…
The cusped hyperbolic census is complete
- MathematicsArXiv
- 2014
For the first time, it is proved here that the census meets its aim: it is rigorously certify that every ideal 3-manifold triangulation with <= 8 tetrahedra is either homeomorphic to one of the census manifolds, or non-hyperbolic.
A combinatorial curvature flow for ideal triangulations
- Mathematics
- 2019
We investigate a combinatorial analogue of the Ricci curvature flow for 3-dimensional hyperbolic cone structures, obtained by gluing together hyperbolic ideal tetrahedra. Our aim is to find a…
A-polynomials, Ptolemy equations and Dehn filling
- Mathematics, Computer Science
- 2020
This work compute A-polynomials by starting with a triangulation of a manifold, then using symplectic properties of the NeumannZagier matrix encoding the gluings to change the basis of the computation, and the result is a simplicifation of the defining equations.
Ideal simplices and double-simplices, their non-orientable hyperbolic manifolds, cone manifolds and orbifolds with Dehn type surgeries and graphic analysis
- MathematicsJournal of Geometry
- 2021
In connection with our works in Molnár (On isometries of space forms. Colloquia Math Soc János Bolyai 56 (1989). Differential geometry and its applications, Eger (Hungary), North-Holland Co.,…
References
SHOWING 1-10 OF 14 REFERENCES
Thrice-punctured spheres in hyperbolic 3-manifolds
- Mathematics
- 1985
The work of W. Thurston has stimulated much interest in the volumes of hyperbolic 3-manifolds. In this paper, it is demonstrated that a 3-manifold M' obtained by cutting open an oriented finite…
Hyperbolic invariants of knots and links
- Mathematics
- 1991
Tables of values for the hyperbolic volume, number of symmetries, cusp volume and conformai invariants of the cusps are given for hyperbolic knots through ten crossings and hyperbolic links of 2, 3…
Hyperbolic Structures on 3-manifolds, I: Deformation of acylindrical manifolds
- Mathematics
- 1986
This is the first in a series of papers showing that Haken manifolds have
hyperbolic structures; this first was published, the second two have existed only in
preprint form, and later preprints…
Three dimensional manifolds, Kleinian groups and hyperbolic geometry
- Mathematics
- 1982
1. A conjectural picture of 3-manifolds. A major thrust of mathematics in the late 19th century, in which Poincare had a large role, was the uniformization theory for Riemann surfaces: that every…
The noncompact hyperbolic 3-manifold of minimal volume
- Mathematics
- 1987
We utilize maximal cusp volumes in order to prove that the Gieseking manifold is the unique complete noncompact hyperbolic 3-manifold of minimal hyperbolic volume.
A Computer Generated Census of Cusped Hyperbolic 3-Manifolds
- MathematicsComputers and Mathematics
- 1989
This paper describes how a computer was used to produce a census of cusped hyperbolic 3-manifolds obtained from 5 or fewer ideal tetrahedra and gives a brief summary of the results.
Euclidean decompositions of noncompact hyperbolic manifolds
- Mathematics
- 1988
On introduit une methode pour diviser une variete hyperbolique non compacte de volume fini en morceaux euclidiens canoniques