# Minimax Rates for Statistical Inverse Problems Under General Source Conditions

@article{Ding2018MinimaxRF, title={Minimax Rates for Statistical Inverse Problems Under General Source Conditions}, author={Litao Ding and P. Math{\'e}}, journal={Computational Methods in Applied Mathematics}, year={2018}, volume={18}, pages={603 - 608} }

Abstract We describe the minimax reconstruction rates in linear ill-posed equations in Hilbert space when smoothness is given in terms of general source sets. The underlying fundamental result, the minimax rate on ellipsoids, is proved similarly to the seminal study by D. L. Donoho, R. C. Liu, and B. MacGibbon [4]. These authors highlighted the special role of the truncated series estimator, and for such estimators the risk can explicitly be given. We provide several examples, indicating… Expand

#### Tables and Topics from this paper

#### 7 Citations

Posterior Contraction in Bayesian Inverse Problems Under Gaussian Priors

- Mathematics
- 2018

We study Bayesian inference in statistical linear inverse problems with Gaussian noise and priors in a separable Hilbert space setting. We focus our interest on the posterior contraction rate in the… Expand

Regularization of linear ill-posed problems involving multiplication operators

- Mathematics
- 2019

We study regularization of ill-posed equations involving multiplication operators when the multiplier function is positive almost everywhere and zero is an accumulation point of the range of this… Expand

Designing truncated priors for direct and inverse Bayesian problems

- Mathematics
- 2021

Abstract: The Bayesian approach to inverse problems with functional unknowns, has received significant attention in recent years. An important component of the developing theory is the study of the… Expand

On the asymptotical regularization for linear inverse problems in presence of white noise

- Computer Science, Mathematics
- SIAM/ASA J. Uncertain. Quantification
- 2021

We interpret steady linear statistical inverse problems as artificial dynamic systems with white noise and introduce a stochastic differential equation (SDE) system where the inverse of the ending… Expand

De-noising by thresholding operator adapted wavelets Gene

- 2018

Donoho and Johnstone [13] proposed a method from reconstructing an unknown smooth function u from noisy data u+ ζ by translating the empirical wavelet coefficients of u+ ζ towards zero. We consider… Expand

De-noising by thresholding operator adapted wavelets

- Mathematics, Computer Science
- Stat. Comput.
- 2019

It is shown that the approximation of u obtained by thresholding the gamblet (operator adapted wavelet) coefficients of $u+\zeta$ is near minimax optimal (up to a multiplicative constant), and with high probability, its energy norm is bounded by that of u up to a constant depending on the amplitude of the noise. Expand

Empirical risk minimization as parameter choice rule for general linear regularization methods

- Mathematics
- 2017

We consider the statistical inverse problem to recover $f$ from noisy measurements $Y = Tf + \sigma \xi$ where $\xi$ is Gaussian white noise and $T$ a compact operator between Hilbert spaces.… Expand

#### References

SHOWING 1-10 OF 11 REFERENCES

Statistical Inverse Estimation in Hilbert Scales

- Mathematics, Computer Science
- SIAM J. Appl. Math.
- 1996

The recovery of signals from indirect measurements, blurred by random noise, is considered under the assumption that prior knowledge regarding the smoothness of the signal is avialable and the general problem is embedded in an abstract Hilbert scale. Expand

Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems 19 789-803

- Mathematics
- 2003

The authors study the best possible accuracy of recovering the solution from linear ill-posed problems in variable Hilbert scales. A priori smoothness of the solution is expressed in terms of general… Expand

Convergence Rates of General Regularization Methods for Statistical Inverse Problems and Applications

- Computer Science, Mathematics
- SIAM J. Numer. Anal.
- 2007

This paper introduces a unifying technique to study the mean square error of a large class of regularization methods (spectral methods) including the aforementioned estimators as well as many iterative methods, such as $\nu$-methods and the Landweber iteration. Expand

Regularization of some linear ill-posed problems with discretized random noisy data

- Computer Science, Mathematics
- Math. Comput.
- 2006

For linear statistical ill-posed problems in Hilbert spaces we introduce an adaptive procedure to recover the unknown so- lution from indirect discrete and noisy data.. This procedure is shown to be… Expand

Minimax Risk Over Hyperrectangles, and Implications

- Mathematics
- 1990

Consider estimating the mean of a standard Gaussian shift when that mean is known to lie in an orthosymmetric quadratically convex set in l 2 . The minimax risk among linear estimates is within 25%… Expand

Review of rates of convergence and regularity conditions for inverse problems

- Mathematics
- 2009

The aim of this article is to review the different rates of convergence encountered in inverse
problems, with both deterministic and stochastic noise. Indeed, in the litterature, several
regularity… Expand

Non asymptotic minimax rates of testing in signal detection with heterogeneous variances

- Mathematics
- 2009

The aim of this paper is to establish non-asymptotic minimax rates of testing for goodness-of-fit hypotheses in a heteroscedastic setting. More precisely, we deal with sequences $(Y_j)_{j\in J}$ of… Expand

Nonparametric statistical inverse problems

- Mathematics
- 2008

We explain some basic theoretical issues regarding nonparametric statistics applied to inverse problems. Simple examples are used to present classical concepts such as the white noise model, risk… Expand

Minimax risk over hyperrectangles

- and implications, Ann. Statist. 18
- 1990