Minimal cubature formulae of trigonometric degree

@article{Cools1996MinimalCF,
  title={Minimal cubature formulae of trigonometric degree},
  author={Ronald Cools and Ian H. Sloan},
  journal={Math. Comput.},
  year={1996},
  volume={65},
  pages={1583-1600}
}
In this paper we construct minimal cubature formulae of trigonometric degree: we obtain explicit formulae for low dimensions of arbitrary degree and for low degrees in all dimensions. A useful tool is a closed form expression for the reproducing kernels in two dimensions. 
Highly Cited
This paper has 22 citations. REVIEW CITATIONS

From This Paper

Figures, tables, and topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 13 references

Cubature formulae for the approximate integration of periodic functions

  • M. V. Noskov
  • Metody Vychisl
  • 1985
Highly Influential
6 Excerpts

A relation between cubature formulae of trigonometric degree and lattice rules, Numerical Integration IV (H

  • M. Beckers, R. Cools
  • Brass and G. Hämmerlin, eds.), Birkhäuser…
  • 1993
Highly Influential
4 Excerpts

Cubature formulae for the approximate integration of periodic functions , Metody Vychisl

  • M. V. Noskov
  • 1990

On cubature formulas of Gaussian type with an asymptotic minimal number of nodes

  • A. V. Reztsov
  • Mathematicheskie Zametki
  • 1990

The representation of lattice quadrature rules as multiple sums

  • I. H. Sloan, J. N. Lyness
  • Math. Comp
  • 1989
3 Excerpts

Cubature formulae for the approximate integration of functions of three variables

  • R. U.S.S.
  • Zh . Vychisl . Mat . i Mat . Fiz .
  • 1988

On the connection between quadrature formulas and sublattices of the lattice of integral vectors, Dokl

  • K. K. Frolov
  • Akad. Nauk SSSR
  • 1977
2 Excerpts

Polynomideale und Kubaturformeln

  • H. M. Möller
  • Ph.D. thesis, Universität Dortmund,
  • 1973
3 Excerpts

On the construction of cubature formulas with fewest nodes, Dokl

  • I. P. Mysovskikh
  • Akad. Nauk SSSR
  • 1968
1 Excerpt

Similar Papers

Loading similar papers…