Minima absolus pour des énergies ferromagnétiques

@inproceedings{Dacorogna2010MinimaAP,
  title={Minima absolus pour des {\'e}nergies ferromagn{\'e}tiques},
  author={Bernard Dacorogna and Irene Fonseca},
  year={2010}
}
Abstract. We study minimizers of the energy for large ferromagnetic bo dies, namely E(m) := Z ['(m) hhe;mi] dx+ 1 2 ZR3 jhmj2 dx; where the magnetization m : ! R3 is taken with values on the unit sphere S2, ' is the anisotropic energy density, he 2 R3 is the applied external magnetic field and hm : R3 ! R3 is the induced magnetic field satisfying curlhm = 0 anddiv (hm + m ) = 0. SettingZ := f 2 S2 : ( ) = min 2S2 ( )g with ( ) := '( ) hhe; i, it is shown that if either0 is on a face of@ coZ or… CONTINUE READING

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-7 of 7 references

Energy minimizers for large ferromagnetic bodies, Arch

A. De Simone
Rational Mech. Anal • 1993
View 8 Excerpts
Highly Influenced

Electro d ynamics of continuous media, Pergamon

E. D. Landau, E. M. Lifschitz, L. P. Pitaevskii
1984
View 4 Excerpts
Highly Influenced

Implicit partial differen tial equations, Birkhäuser

B. Dacorogna, P. Marcellini
1999
View 1 Excerpt

Parametrized measures and variational pri nci

P. Pedregal
1997
View 1 Excerpt

Energy minimizers for large ferromagnetic bodies

A. DeSimone
Arch . Rational Mech . Anal . • 1993

On Landau–Lifschitz equations for ferroma gnetism

A. Visintin
Jap. J. Appl. Math • 1985
View 3 Excerpts

Similar Papers

Loading similar papers…