Mineralization rate of C-labelled dissolved organic matter from leaf litter in soils of a weathering chronosequence


During the processes of primary succession and soil development, large stocks of organic C with very long residence times accumulate in many soils. Soluble organic C adsorbed by soils may contribute to the stock of organic C accumulating during soil development. We determined whether the mineralization rate of water-soluble organic C and the insoluble residue from C-labelled leaf litter added to soils from a weathering chronosequence decrease as soil age and adsorption capacity increase. The soils were formed on mudflows of andesitic material deposited about 75, 255, 616 y ago, and another older but undetermined time before this study. The percentage of the DOC adsorbed by the soils increased with age. After 1 year of incubation there were no significant differences in the mineralization rates of DOC added to soils of different ages. The DOC appeared to be comprised of two fractions, one that comprises about 32% of the total that mineralized with a half decay time of 0.02 y (7 d) and a second fraction comprising 68% with a half decay time of about 1.6 y. Consequently, the slowly mineralized fraction of the soluble C contributed to the accumulation of slowly mineralized C in the soil. Both the slowly and rapidly mineralized fractions of the insoluble residue decomposed more slowly than the corresponding fractions in DOC. We found no support for the idea that increased adsorption capacity due to weathering resulted in protection of soluble organic C from microbial mineralization. q 2004 Elsevier Ltd. All rights reserved.

7 Figures and Tables

Cite this paper

@inproceedings{Qualls2005MineralizationRO, title={Mineralization rate of C-labelled dissolved organic matter from leaf litter in soils of a weathering chronosequence}, author={Robert G. Qualls and Scott D. Bridgham}, year={2005} }