Microstructure and mechanics of human resistance arteries

Abstract

Vascular diseases such as diabetes and hypertension cause changes to the vasculature that can lead to vessel stiffening and the loss of vasoactivity. The microstructural bases of these changes are not presently fully understood. We present a new methodology for stain-free visualization, at a microscopic scale, of the morphology of the main passive components of the walls of unfixed resistance arteries and their response to changes in transmural pressure. Human resistance arteries were dissected from subcutaneous fat biopsies, mounted on a perfusion myograph, and imaged at varying transmural pressures using a multimodal nonlinear microscope. High-resolution three-dimensional images of elastic fibers, collagen, and cell nuclei were constructed. The honeycomb structure of the elastic fibers comprising the internal elastic layer became visible at a transmural pressure of 30 mmHg. The adventitia, comprising wavy collagen fibers punctuated by straight elastic fibers, thinned under pressure as the collagen network straightened and pulled taut. Quantitative measurements of fiber orientation were made as a function of pressure. A multilayer analytical model was used to calculate the stiffness and stress in each layer. The adventitia was calculated to be up to 10 times as stiff as the media and experienced up to 8 times the stress, depending on lumen diameter. This work reveals that pressure-induced reorganization of fibrous proteins gives rise to very high local strain fields and highlights the unique mechanical roles of both fibrous networks. It thereby provides a basis for understanding the micromechanical significance of structural changes that occur with age and disease.

DOI: 10.1152/ajpheart.00002.2016

Cite this paper

@inproceedings{Bell2016MicrostructureAM, title={Microstructure and mechanics of human resistance arteries}, author={J. Bell and Aminat Adio and Adam Pitt and Luciile Hayman and Clare E Thorn and Angela C. Shore and Jacqueline L. Whatmore and C. P. Winlove}, booktitle={American journal of physiology. Heart and circulatory physiology}, year={2016} }