Microformal Geometry and Homotopy Algebras
@article{Voronov2018MicroformalGA, title={Microformal Geometry and Homotopy Algebras}, author={Theodore Th. Voronov}, journal={Proceedings of the Steklov Institute of Mathematics}, year={2018}, volume={302}, pages={88-129} }
We extend the category of (super)manifolds and their smooth mappings by introducing a notion of microformal, or “thick,” morphisms. They are formal canonical relations of a special form, constructed with the help of formal power expansions in cotangent directions. The result is a formal category so that its composition law is also specified by a formal power series. A microformal morphism acts on functions by an operation of pullback, which is in general a nonlinear transformation. More…
15 Citations
THICK MORPHISMS OF SUPERMANIFOLDS AND OSCILLATORY INTEGRAL OPERATORS
- Mathematics
- 2016
We show that thick morphisms (or microformal morphisms) between smooth (super)manifolds, introduced by us before, are classical limits of 'quantum thick morphisms' defined here as particular…
Tangent functor on microformal morphisms
- Mathematics
- 2017
We show how the tangent functor extends naturally from ordinary smooth maps to "microformal" (or "thick") morphisms of supermanifolds, a notion that we introduced earlier. Microformal morphisms…
Thick morphisms of supermanifolds, quantum mechanics, and spinor representation
- MathematicsJournal of Geometry and Physics
- 2020
Non-linear homomorphisms of algebras of functions are induced by thick morphisms.
- Mathematics
- 2020
In 2014, Voronov introduced the notion of thick morphisms of (super)manifolds as a tool for constructing $L_{\infty}$-morphisms of homotopy Poisson algebras. Thick morphisms generalise ordinary…
L-infinity bialgebroids and homotopy Poisson structures on supermanifolds
- Mathematics
- 2019
We generalize to the homotopy case a result of K. Mackenzie and P. Xu on relation between Lie bialgebroids and Poisson geometry. For a homotopy Poisson structure on a supermanifold $M$, we show that…
Thick morphisms, higher Koszul brackets, and $L_{\infty}$-algebroids
- Mathematics
- 2018
It is a classical fact in Poisson geometry that the cotangent bundle of a Poisson manifold has the structure of a Lie algebroid. Manifestations of this structure are the Lichnerowicz differential on…
Symplectic microgeometry, IV: Quantization
- MathematicsPacific Journal of Mathematics
- 2021
We construct a special class of semiclassical Fourier integral operators whose wave fronts are symplectic micromorphisms. These operators have very good properties: they form a category on which the…
On homotopy Lie bialgebroids
- Mathematics
- 2016
A well-known result of A. Vaintrob characterizes Lie algebroids and their morphisms in terms of homological vector fields on supermanifolds. We give an interpretation of Lie bialgebroids and their…
Formal oscillatory integrals and deformation quantization
- MathematicsLetters in Mathematical Physics
- 2019
We develop further the notion of a formal oscillatory integral interpreted as a functional on the amplitudes supported near a fixed non-degenerate critical point $${x_0}$$x0 of the phase function…
References
SHOWING 1-10 OF 51 REFERENCES
The "nonlinear pullback" of functions and a formal category extending the category of supermanifolds
- Mathematics
- 2014
We introduce mappings between function spaces on smooth (super)manifolds, which are generally nonlinear and which generalize the pullbacks with respect to smooth maps. The construction uses canonical…
THICK MORPHISMS OF SUPERMANIFOLDS AND OSCILLATORY INTEGRAL OPERATORS
- Mathematics
- 2016
We show that thick morphisms (or microformal morphisms) between smooth (super)manifolds, introduced by us before, are classical limits of 'quantum thick morphisms' defined here as particular…
Quantum microformal morphisms of supermanifolds: an explicit formula and further properties
- Mathematics
- 2015
We give an explicit formula, as a formal differential operator, for quantum microformal morphisms of (super)manifolds that we introduced earlier. Such quantum microformal morphisms are essentially…
Coisotropic calculus and Poisson groupoids
- Mathematics
- 1988
Lagrangian submanif olds play a special role in the geometry of symplectic manifolds. From the point of view of quantization theory, or simply a categorical approach to symplectic geometry [Gu-S2],…
Deformation Quantization of Poisson Manifolds
- Mathematics
- 1997
I prove that every finite-dimensional Poisson manifold X admits a canonical deformation quantization. Informally, it means that the set of equivalence classes of associative algebras close to the…
Symplectic structures on Banach manifolds
- Mathematics
- 1969
1. Normal form. Let M be a Banach manifold. A symplectic structure on M is a closed 2-form Q such that the associated mapping S: T(M)->T*(M) defined by Q(X) = X _ ] 0 is a bundle isomorphism. If M is…
Thick morphisms, higher Koszul brackets, and $L_{\infty}$-algebroids
- Mathematics
- 2018
It is a classical fact in Poisson geometry that the cotangent bundle of a Poisson manifold has the structure of a Lie algebroid. Manifestations of this structure are the Lichnerowicz differential on…