## 3 Citations

### Approximate Isomorphism of Metric Structures

- Mathematics
- 2020

We give a formalism for approximate isomorphism in continuous logic simultaneously generalizing those of two papers by Ben Yaacov and by Ben Yaacov, Berenstein, Henson, and Usvyatsov, which are…

### Analog reducibility

- Mathematics, Computer ScienceJ. Log. Comput.
- 2021

In this paper we introduce and characterize two ‘analog reducibility’ notions for $[0,1]$-valued oracles on $\omega $ obtained by applying the syntactic characterizations of Turing and enumeration…

### Approximate Categoricity in Continuous Logic

- Mathematics
- 2020

We explore approximate categoricity in the context of distortion systems, introduced in our previous paper, which are a mild generalization of perturbation systems, introduced by Ben Yaacov. We…

## References

SHOWING 1-8 OF 8 REFERENCES

### Point Degree Spectra of Represented Spaces

- MathematicsForum of Mathematics, Sigma
- 2022

The point degree spectrum of a represented space is introduced as a substructure of the Medvedev degrees, which integrates the notion of Turing degrees, enumeration degrees, continuous degrees, and so on and creates a connection among various areas of mathematics including computability theory, descriptive set theory, infinite dimensional topology and Banach space theory.

### Continuous first order logic for unbounded metric structures

- Mathematics
- 2008

We present an adaptation of continuous first order logic to unbounded metric structures. This has the advantage of being closer in spirit to C. Ward Henson's logic for Banach space structures than…

### ON PERTURBATIONS OF CONTINUOUS STRUCTURES

- Mathematics
- 2008

We give a general framework for the treatment of perturbations of types and structures in continuous logic, allowing to specify which parts of the logic may be perturbed. We prove that separable,…

### On d-finiteness in continuous structures

- Mathematics
- 2007

We observe that certain classical results of first order model theory fail in the context of continuous first order logic. We argue that this happens since finite tuples in a continuous structure may…

### CONTINUOUS FIRST ORDER LOGIC AND LOCAL STABILITY

- Philosophy
- 2010

We develop continuous first order logic, a variant of the logic described by Chang and Keisler (1966). We show that this logic has the same power of expression as the framework of open Hausdorff…

### Computable Analysis: An Introduction

- EducationTexts in Theoretical Computer Science. An EATCS Series
- 2000

This book provides a solid fundament for studying various aspects of computability and complexity in analysis and is written in a style suitable for graduate-level and senior students in computer science and mathematics.

### Model theory for metric structures, volume 2 of London Mathematical Society Lecture Note Series, pages 315–427

- 2008

### Model Theory. Encyclopedia of Mathematics and its Applications

- 1993