Metastable orientational order of colloidal discoids


The interplay between phase separation and kinetic arrest is important in supramolecular self-assembly, but their effects on emergent orientational order are not well understood when anisotropic building blocks are used. Contrary to the typical progression from disorder to order in isotropic systems, here we report that colloidal oblate discoids initially self-assemble into short, metastable strands with orientational order—regardless of the final structure. The model discoids are suspended in a refractive index and density-matched solvent. Then, we use confocal microscopy experiments and Monte Carlo simulations spanning a broad range of volume fractions and attraction strengths to show that disordered clusters form near coexistence boundaries, whereas oriented strands persist with strong attractions. We rationalize this unusual observation in light of the interaction anisotropy imparted by the discoids. These findings may guide self-assembly for anisotropic systems in which orientational order is desired, such as when tailored mechanical properties are sought.

DOI: 10.1038/ncomms9507

Extracted Key Phrases

6 Figures and Tables

Cite this paper

@inproceedings{Hsiao2015MetastableOO, title={Metastable orientational order of colloidal discoids}, author={Lilian C Hsiao and Benjamin A Schultz and Jens Glaser and Michael Engel and Megan E Szakasits and Sharon C Glotzer and Michael J Solomon}, booktitle={Nature communications}, year={2015} }