# Metaplectic Ice for Cartan Type C

@article{Gray2017MetaplecticIF, title={Metaplectic Ice for Cartan Type C}, author={Nathan Gray}, journal={arXiv: Representation Theory}, year={2017} }

University of Minnesota Ph.D. dissertation. May 2017. Major: Mathematics. Advisor: Benjamin Brubaker. 1 computer file (PDF); vii, 77 pages.

## Figures and Tables from this paper

figure 1 table 1 figure 2 table 2 figure 3 table 3 table 4 figure 5 figure 6 figure 7 figure 8 figure 9 figure 10 figure 11 figure 12 figure 13 figure 14 figure 15 figure 16 figure 18 figure 19 figure 20 figure 21 figure 22 figure 23 figure 24 figure 25 figure 26 figure 27 figure 28 figure 29 figure 31 figure 32 figure 33 figure 34 figure 35 figure 36

## 14 Citations

### Duality for metaplectic ice

- Mathematics
- 2017

We interpret values of spherical Whittaker functions on metaplectic covers of the general linear group over a nonarchimedean local field as partition functions of two different solvable lattice…

### Double Grothendieck Polynomials and Colored Lattice Models

- Mathematics
- 2020

We construct an integrable colored six-vertex model whose partition function is a double Grothendieck polynomial. This gives an integrable systems interpretation of bumpless pipe dreams and recent…

### Combinatorics of Iwahori Whittaker Functions

- Mathematics
- 2021

We give a combinatorial evaluation of Iwahori Whittaker functions for unramified genuine principal series representations on metaplectic covers of the general linear group over a non-archimedean…

### A Yang–Baxter equation for metaplectic ice

- MathematicsCommunications in Number Theory and Physics
- 2019

We will give new applications of quantum groups to the study of spherical Whittaker functions on the metaplectic $n$-fold cover of $\GL(r,F)$, where $F$ is a nonarchimedean local field. Earlier…

### Resonant Mirković–Vilonen polytopes and formulas for highest-weight characters

- MathematicsSelecta Mathematica
- 2019

Formulas for the product of an irreducible character $$\chi _\lambda $$χλ of a complex Lie group and a deformation of the Weyl denominator as a sum over the crystal $${\mathcal {B}}(\lambda +\rho…

### Deformations of the Weyl Character Formula for SO ( 2 n + 1 ) via Ice Models

- Mathematics
- 2018

The irreducible representations of complex Lie groups are often encoded by Young tableaux and then explored further using combinatorial techniques. Many interesting results have been obtained for…

### C O ] 2 8 N ov 2 01 8 Deformations of the Weyl Character Formula for SO ( 2 n + 1 , C ) via Ice Models Yulia Alexandr

- Mathematics
- 2018

We explore combinatorial formulas for deformations of highest weight characters of the odd orthogonal group SO(2n + 1). Our goal is to represent these deformations of characters as partition…

### Stochastic symplectic ice

- MathematicsLetters in Mathematical Physics
- 2022

In this paper, we construct solvable ice models (six-vertex models) with stochastic weights and U-turn right boundary, which we term “stochastic symplectic ice”. The models consist of alternating…

### Vertex Operators, Solvable Lattice Models and Metaplectic Whittaker Functions

- Mathematics
- 2018

We show that spherical Whittaker functions on an $n$-fold cover of the general linear group arise naturally from the quantum Fock space representation of $U_q(\widehat{\mathfrak{sl}}(n))$ introduced…

### Colored Vertex Models and Iwahori Whittaker Functions

- Mathematics
- 2019

We give a recursive method for computing all values of a basis of Whittaker functions for unramified principal series invariant under an Iwahori or parahoric subgroup of a split reductive group $G$…

## References

SHOWING 1-10 OF 40 REFERENCES

### The metaplectic Casselman-Shalika formula

- Mathematics
- 2011

This paper studies spherical Whittaker functions for central extensions of reductive groups over local fields. We follow the development of Chinta and Offen to produce a metaplectic Casselman-Shalika…

### Duality for metaplectic ice

- Mathematics
- 2017

We interpret values of spherical Whittaker functions on metaplectic covers of the general linear group over a nonarchimedean local field as partition functions of two different solvable lattice…

### Young tableaux

- Mathematics
- 2007

This paper gives a qualitative description how Young tableaux can be used to perform a Clebsch-Gordan decomposition of tensor products in SU(3) and how this can be generalized to SU(N).

### Young Tableaux, Gelfand Patterns, and Branching Rules for Classical Groups

- Mathematics
- 1994

Abstract Young tableaux and Gelfand patterns which combinatorially describe characters of irreducible finite dimensional representations of complex classical Lie groups are presented. Some branching…

### Metaplectic Whittaker functions and crystal bases

- Mathematics
- 2011

We study Whittaker functions on nonlinear coverings of simple algebraic groups over a nonarchimedean local field. We produce a recipe for expressing such a Whittaker function as a weighted sum over a…

### A crystal definition for symplectic multiple dirichlet series

- Mathematics
- 2012

We present a definition for Weyl group multiple Dirichlet series (MDS) of Cartan type C, where the coefficients of the series are given by statistics on crystal graphs for certain highest-weight…

### Principal Series Representations of Metaplectic Groups Over Local Fields

- Mathematics
- 2012

Let G be a split reductive algebraic group over a non-archimedean local field. We study the representation theory of a central extension \(\widetilde{G}\) of G by a cyclic group of order n, under…

### Automorphic Forms and Representations

- Mathematics
- 1998

1. Modular forms 2. Automorphic forms and representations of GL( 2, R) 3. Automorphic representations 4. GL(2) over a p-adic field.

### Another proof of the alternating sign matrix conjecture

- Mathematics
- 1996

Author(s): Kuperberg, Greg | Abstract: Robbins conjectured, and Zeilberger recently proved, that there are 1!4!7!...(3n-2)!/n!/(n+1)!/.../(2n-1)! alternating sign matrices of order n. We give a new…

### HIGHER SPIN GENERALIZATION OF THE 6-VERTEX MODEL AND MACDONALD POLYNOMIALS

- Mathematics
- 2012

The partition function of the 6-vertex model with Domain Wall Boundary Conditions (DWBC) was given by Izergin (8, 9), in a determinantal form. It is known that for a special value of the parameters…