Metabolic and biomechanical effects of velocity and weight support using a lower-body positive pressure device during walking.

Abstract

OBJECTIVES To determine how changes in velocity and weight support affect metabolic power and ground reaction forces (GRFs) during walking using a lower-body positive pressure (LBPP) device. To find specific velocity and weight combinations that require similar aerobic demands but different peak GRFs. DESIGN Repeated measures. SETTING University research laboratory. PARTICIPANTS Healthy volunteer subjects (N=10). INTERVENTIONS Subjects walked 1.00, 1.25, and 1.50 m/s on a force-measuring treadmill at normal weight (1.0 body weight [BW]) and at several fractions of BW (.25, .50, .75, .85 BW). The treadmill was enclosed within an LBPP apparatus that supported BW. MAIN OUTCOME MEASURES Metabolic power, GRFs, and stride kinematics. RESULTS At faster velocities, peak GRFs and metabolic demands were greater. In contrast, walking at lower fractions of BW attenuated peak GRFs and reduced metabolic demand compared with normal weight walking. Many combinations of velocity and BW resulted in similar aerobic demands, yet walking faster with weight support lowered peak GRFs compared with normal weight walking. CONCLUSIONS Manipulating velocity and weight using an LBPP device during treadmill walking can reduce force yet maintain cardiorespiratory demand. Thus, LBPP treadmill training devices could be highly effective for rehabilitation after orthopedic injury and/or orthopedic procedures.

DOI: 10.1016/j.apmr.2010.02.007
0204060201220132014201520162017
Citations per Year

113 Citations

Semantic Scholar estimates that this publication has 113 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Grabowski2010MetabolicAB, title={Metabolic and biomechanical effects of velocity and weight support using a lower-body positive pressure device during walking.}, author={Alena Marie Grabowski}, journal={Archives of physical medicine and rehabilitation}, year={2010}, volume={91 6}, pages={951-7} }