Meeting the demand for innate and adaptive immunities during evolution.

Abstract

An ideal immune system should provide each individual with rapid and efficient responses, a diverse repertoire of recognition and effector molecules and a certain flexibility to match the changing internal and external environment. It should be economic in cells and genes. Specific memory would be useful. It should not be autoreactive. These requirements, a mixture of innate and adaptive immunity features, are modulated in function of the dominant mode of selection for each species of metazoa during evolution (K or r). From sponges to man, a great diversity of receptors and effector mechanisms, some of them shared with plants, are articulated around conserved signalling cascades. Multiple attempts at combining innate and adaptive immunity somatic features can be observed as new somatic mechanisms provide individualized repertoires of receptors throughout metazoa, in agnathans, prochordates, echinoderms and mollusks. The adaptive immunity of vertebrates with lymphocytes and their specific receptors of the immunoglobulin superfamily, the major histocompatibility complex, developed from innate immunity evolutionary lines that can be traced back in earlier deuterostomes.

Cite this paper

@article{Pasquier2005MeetingTD, title={Meeting the demand for innate and adaptive immunities during evolution.}, author={Louis du Pasquier}, journal={Scandinavian journal of immunology}, year={2005}, volume={62 Suppl 1}, pages={39-48} }