Medical Image Fusion based on DWT and SPIHT Techniques with Quantitative Analysis

Abstract

Medical image fusion has revolutionized medical analysis by raising the preciseness and performance of computer assisted diagnosing. This fused image is a lot of productive as compared to its original input images. The fusion technique in medical images is beneficial for resourceful disease diagnosing purpose. This paper illustrates completely different multimodality medical picture combination method and their consequences evaluate with various quantitative metrics. Firstly 2 registered pictures CT (anatomical information) and MRI-T2 (functional information) are taken as input. Then the fusion techniques are applied onto the input pictures such as Mamdani kind minimum-sum-mean of maximum (MIN-SUM-MOM) and Redundancy discrete wave transform (RDWT) and so the resulting fused image is analyzed with quantitative metrics namely Over all irritated Entropy, Peak Signal –toNoise ratio (PSNR), Signal to Noise ratio (SNR), Structural Similarity Index(SSIM), Mutual Information(MI). From the derived results it's inferred that Mamdani type MIN-SUM-MOM is more productive than RDWT and also the projected fusion techniques provide additional info compared to the input images as justified by all the metrics.

Cite this paper

@inproceedings{Kumar2016MedicalIF, title={Medical Image Fusion based on DWT and SPIHT Techniques with Quantitative Analysis}, author={Gopalakrishnan Kumar and Manish Trivedi and Chandra Prakash and Sreejith Rajkumar and Yong Yang and Dong Sun Park and Shuying Huang and Richa Singh and Mayank Vatsa and Afzel Noore and Yufeng Zheng and Edward A. Essock and Bradley C Hansen and Andrew M. Haun}, year={2016} }