Corpus ID: 88511958

MedLDA: A General Framework of Maximum Margin Supervised Topic Models

  title={MedLDA: A General Framework of Maximum Margin Supervised Topic Models},
  author={J. Zhu and Amr Ahmed and E. Xing},
  journal={arXiv: Machine Learning},
Supervised topic models utilize document's side information for discovering predictive low dimensional representations of documents. Existing models apply the likelihood-based estimation. In this paper, we present a general framework of max-margin supervised topic models for both continuous and categorical response variables. Our approach, the maximum entropy discrimination latent Dirichlet allocation (MedLDA), utilizes the max-margin principle to train supervised topic models and estimate… Expand
2 Citations

Figures from this paper

Topic Modeling: A Complete Introductory Guide
  • PDF
Ontology-Based Temporal Relation Modeling with MapReduce Latent Dirichlet Allocations for Big EHR Data
  • 1


Supervised Topic Models
  • 1,518
  • Highly Influential
  • PDF
Correlated Topic Models
  • 939
  • PDF
Partially Observed Maximum Entropy Discrimination Markov Networks
  • 26
  • PDF
Latent Dirichlet Allocation
  • 26,320
  • Highly Influential
  • PDF
Mixtures of Conditional Maximum Entropy Models
  • 21
  • PDF
Laplace maximum margin Markov networks
  • 23
  • PDF
Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora
  • 1,208
  • Highly Influential
  • PDF
Finding scientific topics
  • T. Griffiths, M. Steyvers
  • Computer Science, Medicine
  • Proceedings of the National Academy of Sciences of the United States of America
  • 2004
  • 4,983
  • PDF
Maximum Entropy Discrimination
  • 283
  • Highly Influential
  • PDF