Mechanism of action of the novel plasma membrane Ca(2+)-pump inhibitor caloxin.


Caloxin 2A1 is a novel inhibitor of the plasma membrane (PM) Ca(2+)-pump [Am. J. Physiol. Cell Physiol. 280 (2001) C1027]. The PM Ca(2+)-pump is a Ca(2+)-Mg(2+)-ATPase that expels Ca(2+) from cells to help them maintain low concentrations of cytosolic Ca(2+). Caloxin 2A1 inhibits Ca(2+)-Mg(2+)-ATPase in human erythrocyte leaky ghosts. Here we report that this inhibition is non-competitive with respect to the substrates Ca(2+) and ATP and the activator calmodulin. This was anticipated since the high affinity binding site for Ca(2+) and sites for ATP and calmodulin are intracellular whereas caloxin 2A1 is a peptide selected for binding to the second extracellular domain of the pump. Caloxin 2A1 also inhibited the Ca(2+)-dependent formation of the acid stable 140 kDa acylphosphate intermediate from 32P-gamma-ATP. However, it did not inhibit the formation of the acylphosphate intermediate in the reverse direction-from 32P-orthophosphate. Consistent with results on mutagenesis of transmembrane residues in the pump protein, we suggest that caloxin 2A1 inhibits conformational changes required during the reaction cycle of the pump.

Cite this paper

@article{Holmes2003MechanismOA, title={Mechanism of action of the novel plasma membrane Ca(2+)-pump inhibitor caloxin.}, author={Melanie E. Holmes and Jasmine Chaudhary and A. K. Grover}, journal={Cell calcium}, year={2003}, volume={33 4}, pages={241-5} }