Measuring relevance between discrete and continuous features based on neighborhood mutual information


Measures of relevance between features play an important role in classification and regression analysis. Mutual information has been proved an effective measure for decision tree construction and feature selection. However, there is a limitation in computing relevance between numerical features with mutual information due to problems of estimating probability density functions in high-dimensional spaces. In this work, we generalize Shannon’s information entropy to neighborhood information entropy and propose a measure of neighborhood mutual information. It is shown that the new measure is a natural extension of classical mutual information which reduces to the classical one if features are discrete; thus the new measure can also be used to compute the relevance between discrete variables. In addition, the new measure introduces a parameter delta to control the granularity in analyzing data. With numeric experiments, we show that neighborhood mutual information produces the nearly same outputs as mutual information. However, unlike mutual information, no discretization is required in computing relevance when used the proposed algorithm. We combine the proposed measure with four classes of evaluating strategies used for feature selection. Finally, the proposed algorithms are tested on several benchmark data sets. The results show that neighborhood mutual information based algorithms yield better performance than some classical ones. 2011 Published by Elsevier Ltd.

DOI: 10.1016/j.eswa.2011.01.023

Extracted Key Phrases

15 Figures and Tables

Cite this paper

@article{Hu2011MeasuringRB, title={Measuring relevance between discrete and continuous features based on neighborhood mutual information}, author={Qinghua Hu and Lei Zhang and David Zhang and Wei Pan and Shuang An and Witold Pedrycz}, journal={Expert Syst. Appl.}, year={2011}, volume={38}, pages={10737-10750} }