Measurement of the $\pi \rightarrow \mbox{e} \nu$ branching ratio

@inproceedings{AAguilarArevalo2015MeasurementOT,
  title={Measurement of the \$\pi \rightarrow \mbox\{e\} \nu\$ branching ratio},
  author={A.Aguilar-Arevalo and Masakazu Aoki and Marius Blecher and D. I. Britton and Douglas Andrew Bryman and Dorothea vom Bruch and Shijuan Chen and Joseph R. Comfort and Min Ding and Luca Doria and S. Cuen-Rochin and Peter Gumplinger and Ahmed Hussein and Y. Igarashi and Shigeru Ito and Steven H. Kettell and Leonid Kurchaninov and Laurence S. Littenberg and Chlo{\'e} Malbrunot and Richard Evans Mischke and Toshio Numao and D. Protopopescu and Aleksey Sher and Tiri Sullivan and D. V. Vavilov and Kazuyoshi Yamada},
  year={2015}
}
  • A.Aguilar-Arevalo, Masakazu Aoki, +23 authors Kazuyoshi Yamada
  • Published 2015
  • Physics
  • A new measurement of the branching ratio, $R_{e/\mu} =\Gamma (\pi^+ \rightarrow \mbox{e}^+ \nu + \pi^+ \rightarrow \mbox{e}^+ \nu \gamma)/ \Gamma (\pi^+ \rightarrow \mu^+ \nu + \pi^+ \rightarrow \mu^+ \nu \gamma)$, resulted in $R_{e/\mu}^{exp} = (1.2344 \pm 0.0023 (stat) \pm 0.0019 (syst)) \times 10^{-4}$. This is in agreement with the standard model prediction and improves the test of electron-muon universality to the level of 0.1 %. 

    Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

    2
    Twitter Mentions