Measurement and estimation of rate constants for the reactions of hydroxyl radical with several alkanes and cycloalkanes.


Relative rate experiments were used to measure ratios of chemical kinetics rate constants as a function of temperature for the reactions of OH with isobutane, isopentane, 2-methylpentane, 3-methylpentane, 2,3-dimethylbutane, 2,3-dimethylpentane, 2,4-dimethylpentane, 2,3,4-trimethylpentane, n-heptane, n-octane, cyclopentane, cyclohexane, and cycloheptane. The results have been used to calibrate a structure-reactivity rate constant estimation method for k(298 K) which, when combined with previously determined relationships between k(298 K) and the Arrhenius parameters, is capable of determining the temperature dependence accurately. The estimation method reproduces most of the observed rate data within experimental accuracy but appears to fail for 2,3-dimethylbutane, which has an anomalously high rate constant. Curvature in the Arrhenius plots at low temperatures is not present for compounds with a single type of C-H bond and, for compounds with different C-H bonds, is shown to be consistent with effects due to different group sites on the molecule.