Maximal regularity for nonautonomous evolution equations

@inproceedings{Amann2004MaximalRF,
  title={Maximal regularity for nonautonomous evolution equations},
  author={H. Amann},
  year={2004}
}
We derive sufficient conditions, perturbation theorems in particular, for nonautonomous evolution equations to possess the property of maximal Lp regularity. Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-21760 Accepted Version Originally published at: Amann, H (2004). Maximal regularity for nonautonomous evolution equations. Advanced Nonlinear Studies, 4(4):417-430. Maximal regularity for nonautonomous evolution equations H. Amann… CONTINUE READING
Highly Cited
This paper has 27 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 24 references

L regularity for abstract differential equations

  • G. Dore
  • Functional Analysis and Related Topics,
  • 1991
Highly Influential
4 Excerpts

Linear parabolic equations with singular potentials

  • H. Amann
  • J. Evol. Equ.,
  • 2003
2 Excerpts

Nonautonomous parabolic equations involving measures

  • H. Amann
  • Zapiski Nauchn. Seminar. POMI,
  • 2003
2 Excerpts

R-boundedness, Fourier multipliers and problems of elliptic and parabolic type

  • R. Denk, M. Hieber, J. Prüss
  • Memoires Amer. Math. Soc.,
  • 2003
1 Excerpt

Linear parabolic problems involving measures

  • H. Amann
  • Rev. R. Acad. Cien. Serie A. Mat. (RACSAM),
  • 2001

Operator-valued Fourier multiplier theorems and maximal Lpregularity

  • L. Weis
  • Math. Ann.,
  • 2001
1 Excerpt

Perturbation theorems for maximal Lpregularity

  • P.Ch. Kunstmann, L. Weis
  • Ann. Scuola Norm. Sup. Pisa Cl. Sci
  • 2001
1 Excerpt

Solvability and maximal regularity of parabolic evolution equations with coefficients continuous in time

  • J. Prüss, R. Schnaubelt
  • J. Math. Anal. Appl.,
  • 2001
2 Excerpts

Pseudo-differential operators and maximal regularity results for non-autonomous parabolic equations

  • M. Hieber, S. Monniaux
  • Proc. Amer. Math. Soc.,
  • 2000
1 Excerpt

Similar Papers

Loading similar papers…