Corpus ID: 6937017

Maximal Complexity of Finite Words

@article{Anisiu2010MaximalCO,
  title={Maximal Complexity of Finite Words},
  author={M. Anisiu and Z. Blazsik and Z. K{\'a}sa},
  journal={ArXiv},
  year={2010},
  volume={abs/1002.2724}
}
The subword complexity of a finite word $w$ of length $N$ is a function which associates to each $n\le N$ the number of all distinct subwords of $w$ having the length $n$. We define the \emph{maximal complexity} C(w) as the maximum of the subword complexity for $n \in \{1,2,..., N \}$, and the \emph{global maximal complexity} K(N) as the maximum of C(w) for all words $w$ of a fixed length $N$ over a finite alphabet. By R(N) we will denote the set of the values $i$ for which there exits a word… Expand
7 Citations

Figures, Tables, and Topics from this paper

On the shape of subword complexity sequences of finite words
  • 1
  • PDF
Algorithms for subsequence combinatorics
  • 69
  • PDF
PRISM COMPLEXITY OF MATRICES
  • PDF
Generalized de Bruijn words and the state complexity of conjugate sets
  • 1
On arc-disjoint Hamiltonian cycles in De Bruijn graphs
  • Z. Kása
  • Mathematics, Computer Science
  • ArXiv
  • 2010
  • 4
  • PDF
Testing of random matrices
  • 3
  • PDF
Maximal State Complexity and Generalized de Bruijn Words
  • PDF

References

SHOWING 1-10 OF 10 REFERENCES
On the Combinatorics of Finite Words
  • A. Luca
  • Computer Science, Mathematics
  • Theor. Comput. Sci.
  • 1999
  • 92
Combinatorics on Words
  • 584
  • PDF
Circuits and Trees in Oriented Linear Graphs
  • 214
On a problem of arrangements
  • 94
  • Highly Influential
Modelling of interconnection networks using de Bruijn graphs
  • Third Conference of Program Designer, Ed. A. Iványi, Budapest
  • 1987
Modelling of interconnection networks using de Bruijn graphs , Third Conference of Program Designer
  • 1987
Modelling of interconnection networks using de Bruijn graphs, Third Conference of Program Designer
  • Modelling of interconnection networks using de Bruijn graphs, Third Conference of Program Designer
  • 1987
Zur Teilwortcomplexität für Wörter und FolgenFolgen¨Folgenüber einem endlichen Alphabet
  • EIK
  • 1977
Zur Teilwortkomplexität für Wörter und Folgen über einem endlichen Alphabet
  • M. Heinz
  • Mathematics, Computer Science
  • J. Inf. Process. Cybern.
  • 1977
  • 7
A combinatorial problem
  • 1,824