Maximal Complexity of Finite Words
@article{Anisiu2010MaximalCO, title={Maximal Complexity of Finite Words}, author={M. Anisiu and Z. Blazsik and Z. K{\'a}sa}, journal={ArXiv}, year={2010}, volume={abs/1002.2724} }
The subword complexity of a finite word $w$ of length $N$ is a function which associates to each $n\le N$ the number of all distinct subwords of $w$ having the length $n$. We define the \emph{maximal complexity} C(w) as the maximum of the subword complexity for $n \in \{1,2,..., N \}$, and the \emph{global maximal complexity} K(N) as the maximum of C(w) for all words $w$ of a fixed length $N$ over a finite alphabet. By R(N) we will denote the set of the values $i$ for which there exits a word… Expand
7 Citations
On the shape of subword complexity sequences of finite words
- Mathematics, Computer Science
- ArXiv
- 2013
- 1
- PDF
Generalized de Bruijn words and the state complexity of conjugate sets
- Computer Science, Mathematics
- DCFS
- 2019
- 1
References
SHOWING 1-10 OF 10 REFERENCES
Modelling of interconnection networks using de Bruijn graphs
- Third Conference of Program Designer, Ed. A. Iványi, Budapest
- 1987
Modelling of interconnection networks using de Bruijn graphs , Third Conference of Program Designer
- 1987
Modelling of interconnection networks using de Bruijn graphs, Third Conference of Program Designer
- Modelling of interconnection networks using de Bruijn graphs, Third Conference of Program Designer
- 1987
Zur Teilwortcomplexität für Wörter und FolgenFolgen¨Folgenüber einem endlichen Alphabet
- EIK
- 1977
Zur Teilwortkomplexität für Wörter und Folgen über einem endlichen Alphabet
- Mathematics, Computer Science
- J. Inf. Process. Cybern.
- 1977
- 7