Maximal Cohen–Macaulay modules over certain Segre products

@article{Ma2018MaximalCM,
  title={Maximal Cohen–Macaulay modules over certain Segre products},
  author={Linquan Ma},
  journal={Communications in Algebra},
  year={2018},
  volume={47},
  pages={2488 - 2493}
}
  • Linquan Ma
  • Published 2018
  • Mathematics
  • Communications in Algebra
  • Abstract We prove some results on the non-existence of rank one maximal Cohen–Macaulay modules over certain Segre product rings. As an application we show that over these Segre product rings there do not exist maximal Cohen–Macaulay modules with multiplicity less than or equal to the parameter degree of the ring. This disproves a conjecture of Schoutens [14]. 
    1
    Twitter Mention

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 26 REFERENCES

    Maximal Cohen-Macaulay modules over local toric rings

    VIEW 6 EXCERPTS
    HIGHLY INFLUENTIAL

    Non-Cohen-Macaulay unique factorization domains in small dimensions

    VIEW 1 EXCERPT

    ) , no . 1 , 19 – 24 . [ Fle 81 ] H . Flenner : Divisorenklassengruppen quasihomogener Singularitäten

    • K. Watanabe
    • J . Reine Angew . Math .
    • 1981

    Backelin: Linear maximal Cohen-Macaualy modules over strict complete intersections

    • J. Herzog, B. Ulrich
    • J. Pure Appl. Algebra
    • 1991