Matrix integrals and the counting of tangles and links

@article{ZinnJustin2002MatrixIA,
  title={Matrix integrals and the counting of tangles and links},
  author={Paul Zinn-Justin and Jean-Bernard Zuber},
  journal={Discrete Mathematics},
  year={2002},
  volume={246},
  pages={343-360}
}
Using results on the counting of planar Feynman diagrams derived in matrix models, recent results of Sundberg and Thistlethwaite on the counting of alternating tangles and links are reproduced. 

From This Paper

Figures, tables, and topics from this paper.
8 Citations
12 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 12 references

The rate of Growth of the Number of Prime Alternating Links and Tangles

  • C. Sundberg, M. Thistlethwaite
  • Pac. J. Math. 182
  • 1998
Highly Influential
5 Excerpts

M

  • J. Hoste
  • Thistlethwaite and J. Weeks, The First 1,701,936…
  • 1998
1 Excerpt

Volovich, Knots and Matrix Models, Infinite Dim

  • I.V.I.Ya. Arefeva
  • Anal. Quantum Prob
  • 1998
1 Excerpt

Recent progress in the theory of non-critical strings

  • V. A. Kazakov, A. A. Migdal
  • Nucl. Phys. B 311
  • 1988
1 Excerpt

Planar Diagrams

  • E. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber
  • Commun. Math. Phys. 59
  • 1978
1 Excerpt

Knots and Links, Publish or Perish, Berkeley

  • D. Rolfsen
  • 1976
1 Excerpt

A Planar Diagram Theory for Strong Interactions

  • G. ’t Hooft
  • Nucl. Phys. B
  • 1974
1 Excerpt

Similar Papers

Loading similar papers…