Matrices and graphs in Euclidean geometry

@inproceedings{Fiedler2005MatricesAG,
  title={Matrices and graphs in Euclidean geometry},
  author={Miroslav Fiedler},
  year={2005}
}
Some examples of the interplay between matrix theory, graph theory and n-dimensional Euclidean geometry are presented. In particular, qualitative properties of interior angles in simplices are completely characterized. For right simplices, a relationship between the tree of legs and the circumscribed Steiner ellipsoids is proved. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-8 of 8 references

Eigenvectors of acyclic matrices

  • M. Fiedler
  • Czechoslovak Math. J.,
  • 1975
Highly Influential
3 Excerpts

A geometric approach to the Laplacian matrix of a graph. In: Combinatorial and Graph-Theoretical Problems in Linear Algebra

  • M. Fiedler
  • New York,
  • 1993
3 Excerpts

A geometric approach to the Laplacian matrix of a graph

  • M. Fiedler.
  • Czechoslovak Math . J .
  • 1975

Relations between the diagonal elements of two mutually inverse positive definite matrices

  • M. Fiedler
  • Czechoslovak Math. J.,
  • 1964
2 Excerpts

Über eine Ungleichung für positiv definite Matrizen

  • M. Fiedler
  • Math. Nachrichten,
  • 1961
1 Excerpt

Über zyklische n-Simplexe und konjugierte Raumvielecke

  • M. Fiedler
  • Comm. Math. Univ. Carol
  • 1961
1 Excerpt

Über qualitative Winkeleigenschaften der Simplexe

  • M. Fiedler
  • Czechoslovak Math. J.,
  • 1957
3 Excerpts

Theory and Applications of Distance Geometry

  • L. M. Blumenthal
  • 1953

Similar Papers

Loading similar papers…