Mathematical Justification of the Hydrostatic Approximation in the Primitive Equations of Geophysical Fluid Dynamics
@article{Azrad2001MathematicalJO, title={Mathematical Justification of the Hydrostatic Approximation in the Primitive Equations of Geophysical Fluid Dynamics}, author={Pascal Az{\'e}rad and Francisco Guill{\'e}n}, journal={SIAM J. Math. Anal.}, year={2001}, volume={33}, pages={847-859} }
Geophysical fluids all exhibit a common feature: their aspect ratio (depth to hori- zontal width) is very small. This leads to an asymptotic model widely used in meteorology, oceanog- raphy, and limnology, namely the hydrostatic approximation of the time-dependent incompressible Navier-Stokes equations. It relies on the hypothesis that pressure increases linearly in the vertical direction. In the following, we prove a convergence and existence theorem for this model by means of anisotropic…
96 Citations
Justification of the Hydrostatic Approximation of the Primitive Equations in Anisotropic Space $L^\infty_H L^q_{x_3}(\Torus^3)$
- Mathematics
- 2021
The primitive equations are fundamental models in geophysical fluid dynamics and derived from the scaled Navier-Stokes equations. In the primitive equations, the evolution equation to the vertical…
Weak solution of the merged mathematical equations of the polluted atmosphere
- Environmental Science, MathematicsMathematical Methods in the Applied Sciences
- 2020
Considered as a geophysical fluid, the polluted atmosphere shares the shallow domain characteristics with other natural large‐scale fluids such as seas and oceans. This means that its domain is…
An Approach to the Primitive Equations for Oceanic and Atmospheric Dynamics by Evolution Equations
- Mathematics
- 2020
The primitive equations for oceanic and atmospheric dynamics are a fundamental model for many geophysical flows. In this chapter we present a summary of an approach to these equations based on the…
Rigorous derivation of the full primitive equations by scaled Boussinesq equations
- Mathematics
- 2021
The primitive equations of large-scale ocean dynamics form the fundamental model in geophysical flows. It is well-known that the primitive equations can be formally derived by hydrostatic…
Rigorous derivation of the primitive equations with full viscosity and full diffusion by scaled Boussinesq equations
- Mathematics
- 2021
The primitive equations of large-scale ocean dynamics form the fundamental model in geophysical flows. It is well-known that the primitive equations can be formally derived by hydrostatic balance. On…
New Developments and Cosine Effect in the Viscous Shallow Water and Quasi-geostrophic Equations
- Environmental ScienceMultiscale Model. Simul.
- 2008
The viscous Shallow Water Equations and Quasi-Geostrophic Equations are considered in this paper. Some new terms, related to the Coriolis force, are revealed thanks to a rigorous asymptotic analysis.…
Asymptotic derivation of a Navier condition for the primitive equations
- Mathematics
- 2003
This paper is devoted to the establishment of a friction boundary condition associated with the hydrostatic Navier- Stokes equations (also called the primitive equations). Usually the Navier boundary…
SMALL-TIME SOLVABILITY OF PRIMITIVE EQUATIONS FOR THE OCEAN WITH SPATIALLY-VARYING VERTICAL MIXING
- Mathematics
- 2015
The small-time existence of a strong solution to the free surface problem of primitive equations for the ocean with variable turbulent viscosity terms is shown in this paper. In this model, the…
The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: Rigorous justification of the hydrostatic approximation
- MathematicsJournal de Mathématiques Pures et Appliquées
- 2019
Kinetic entropy for layer-averaged hydrostatic Navier-Stokes equations
- Physics
- 2017
We are interested in the numerical approximation of the hydrostatic free surface incompressible Navier-Stokes equations. By using a layer-averaged version of the equations, we are able to extend…
References
SHOWING 1-10 OF 22 REFERENCES
Navier-Stokes equations in thin spherical domains
- Mathematics
- 1997
Abstract. Our aim in this article is to give a mathematical justification for the primitive equations of the atmosphere and the ocean which are known to be the fundamental equations of meteorology…
New formulations of the primitive equations of atmosphere and applications
- Environmental Science, Mathematics
- 1992
The primitive equations are the fundamental equations of atmospheric dynamics. With the purpose of understanding the mechanism of long-term weather prediction and climate changes, the authors study…
A vertical diffusion model for lakes
- Mathematics
- 1999
The motion of a fluid in a lake with small depth compared to width is investigated. We prove that when the depth goes to 0, the solution of the stationary Navier--Stokes equations with adherence at…
Navier-Stokes equations
- Mathematics, Physics
- 1992
A criterion is given for the convergence of numerical solutions of the Navier-Stokes equations in two dimensions under steady conditions. The criterion applies to all cases, of steady viscous flow in…
Global Regularity of the Navier-Stokes Equation on Thin Three Dimensional Domains with Periodic Boundary Conditions
- Mathematics
- 1999
This paper gives another version of results due to Raugel and Sell, and similar results due to Moise, Temam and Ziane, that state the following: the solution of the Navier-Stokes equation on a thin…
On the equations of the large-scale ocean
- Environmental Science
- 1992
As a preliminary step towards understanding the dynamics of the ocean and the impact of the ocean on the global climate system and weather prediction, the authors study the mathematical formulations…
Some estimates for the anisotropic Navier-Stokes equations and for the hydrostatic approximation
- Mathematics
- 1992
Ce papier est consacre a l'etude des equations de Navier-Stokes decrivant l'ecoulement d'un liquide incompressible dans un bassin peu profond et a l'approximation hydrostatique de ces equations. Nous…
GLOBAL REGULARITY OF THE NAVIER-STOKES EQUATION ON THIN THREE-DIMENSIONAL DOMAINS WITH PERIODIC BOUNDARY CONDITIONS
- Mathematics
- 1998
This paper gives another version of results due to Raugel and Sell, and similar results due to Moise, Temam and Ziane, that state the following: the solution of the Navier-Stokes equation on a thin…
Un modèle asymptotique en océanographie
- Mathematics
- 1990
We study an incompressible fluid flow with anisotropic viscosity in a «thin domain». This problem is involved in oceanography modelling. The stated results concern the Stokes problem. We justify the…
Navier-Stokes equations in three-dimensional thin domains with various boundary conditions
- Mathematics, Computer Science
- 1996
New methods for studying the Navier-Stokes equations in thin domains are developed and the behavior of the average of the strong solution in the thin direction when the thickness of the domain goes to zero is studied.