Mass yields of secondary organic aerosols from the oxidation of α-pinene and real plant emissions

  • L. Q. Hao, A. Kortelainen, +5 authors Ari Laaksonen
  • Published 2011

Abstract

Biogenic volatile organic compounds (VOCs) are a significant source of global secondary organic aerosol (SOA); however, quantifying their aerosol forming potential remains a challenge. This study presents smog chamber laboratory work, focusing on SOA formation via oxidation of the emissions of two dominant tree species from boreal forest area, Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies), by hydroxyl radical (OH) and ozone (O3). Oxidation of α-pinene was also studied as a reference system. Tetramethylethylene (TME) and 2-butanol were added to control OH and O3 levels, thereby allowing SOA formation events to be categorized as resulting from either OHdominated or O3-initiated chemistry. SOA mass yields from α-pinene are consistent with previous studies while the yields from the real plant emissions are generally lower than that from α-pinene, varying from 1.9% at an aerosol mass loading of 0.69 μg m−3 to 17.7% at 26.0 μg m−3. Mass yields from oxidation of real plant emissions are subject to the interactive effects of the molecular structures of plant emissions and their reaction chemistry with OH and O3, which Correspondence to: L. Q. Hao (hao.liqing@uef.fi) lead to variations in condensable product volatility. SOA formation can be reproduced with a two-product gas-phase partitioning absorption model in spite of differences in the source of oxidant species and product volatility in the real plant emission experiments. Condensable products from OH-dominated chemistry showed a higher volatility than those from O3-initiated systems during aerosol growth stage. Particulate phase products became less volatile via aging process which continued after input gas-phase oxidants had been completely consumed.

8 Figures and Tables

Cite this paper

@inproceedings{Hao2011MassYO, title={Mass yields of secondary organic aerosols from the oxidation of α-pinene and real plant emissions}, author={L. Q. Hao and A. Kortelainen and Jesse H. Kroll and Pasi O. Miettinen and Markku Kulmala and Douglas R. Worsnop and James N. Smith and Ari Laaksonen}, year={2011} }