Mass spectrometric quantification of endogenous beta-endorphin.


Fast atom bombardment (FAB) mass spectrometry and multiple reaction monitoring (MRM) in the B/E linked-field scan mode were used to quantify endogenous beta-endorphin (BE) in individual human pituitary extracts. The experimental protocol includes the addition of a stable isotope-labeled internal standard ((2H4-Ile22)BE1-31, human) to the tissue homogenate before extraction, purification of the native BE by a combination of Sep-Pak chromatography and gradient high-performance liquid chromatography (HPLC), trypsin digestion to cleave BE into smaller peptides, and separation of the tryptic fragment BE20-24 (NAIIK) by isocratic reversed-phase HPLC. Mass spectrometric quantification is based upon recording either (a) the [M + H]+ ions of NAIIK and its deuterated analog ((2H4)NAIIK), or (b) the transitions ([NAIIK + H](+)----[NAI]+) and [((2H4)NAIIK + H](+)----[(2H4)NAI]+) using the B/E linked-field scan. Linear calibration curves were obtained using these two mass spectrometric techniques from standard solutions containing 1.25-20 micrograms of BE; each standard solution also contained 10 micrograms of (2H4)BE. The amounts (means +/- s.d.) of endogenous BE in five separate human pituitaries were found to be 156 +/- 84 [( M + H]+ method) and 169 +/- 99 pmol mg-1 protein (MRM method).

Citations per Year

163 Citations

Semantic Scholar estimates that this publication has 163 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Dass1991MassSQ, title={Mass spectrometric quantification of endogenous beta-endorphin.}, author={C. M. S. Dass and J J Kusmierz and Dominic M. Desiderio}, journal={Biological mass spectrometry}, year={1991}, volume={20 3}, pages={130-8} }