Mappings of Finite Distortion : Formation of Cusps

@inproceedings{Koskela2007MappingsOF,
  title={Mappings of Finite Distortion : Formation of Cusps},
  author={Pekka Koskela and Juhani Takkinen},
  year={2007}
}
Suppose that f is a quasiconformal mapping of the unit disc B into R. It is well-known that f has an extension to a quasiconformal homeomorphism of the entire plane if and only if the boundary of f(B) is a quasicircle. Since quasicircles are exactly the Jordan curves which satisfy the so-called three point condition, the extendability of f to a quasiconformal mapping of the entire plane is determined by the geometric properties of the boundary of f(B). For this see [2]. On the other hand, a… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.

Citations

Publications citing this paper.
Showing 1-5 of 5 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 17 references

Mappings of finite distortion: Capacity and modulus inequalities

  • P. Koskela, J. Onninen
  • J. reine angew. Math. 599
  • 2006
Highly Influential
4 Excerpts

Mappings of finite distortion : monotonicity and continuity

  • P. Koskela T. Iwaniec, J. Onninen
  • Arch . Ration . Mech . Anal .
  • 2006

A note on mappings of finite distortion: the sharp modulus of continuity

  • J. Onninen, X. Zhong
  • Michigan Math. J. 53(2)
  • 2005
3 Excerpts

Mappings of finite distortion: gauge dimension of generalized quasicircles

  • D. Herron, P. Koskela
  • Illinois J. Math. 47(4)
  • 2003
1 Excerpt

Mappings of finite distortion: the sharp modulus of continuity

  • P. Koskela, J. Onninen
  • Trans. Amer. Math. Soc. 355(5)
  • 2003
1 Excerpt

Chirurgie parabolique

  • P. Häıssinsky
  • C. R. Acad. Sci. Paris Sér. I Math. 327(2)
  • 1998
1 Excerpt

Regularity of the inverse of a planar Sobolev homeomorphism

  • S. Hencl, P. Koskela
  • Acad . Sci . Paris Sér . I Math .
  • 1998

Quasiconformal distortion on arcs

  • J. Heinonen, R. Näkki
  • J. Anal. Math. 63
  • 1994
1 Excerpt

Solutions de l’équation de Beltrami avec ‖μ‖∞ = 1

  • G. David
  • Ann. Acad. Sci. Fenn. Ser. A I Math. 13(1)
  • 1988
2 Excerpts

Similar Papers

Loading similar papers…