• Corpus ID: 203951946

Mapping class groups, skein algebras and combinatorial quantization

@article{Faitg2019MappingCG,
  title={Mapping class groups, skein algebras and combinatorial quantization},
  author={Matthieu Faitg},
  journal={arXiv: Quantum Algebra},
  year={2019}
}
  • Matthieu Faitg
  • Published 16 September 2019
  • Mathematics
  • arXiv: Quantum Algebra
Les algebres L(g,n,H) ont ete introduites par Alekseev-Grosse-Schomerus et Buffenoir-Roche au milieu des annees 1990, dans le cadre de la quantification combinatoire de l'espace de modules des G-connexions plates sur la surface S(g,n) de genre g avec n disques ouverts enleves. L'algebre de Hopf H, appelee algebre de jauge, etait a l'origine le groupe quantique U_q(g), avec g=Lie(G). Dans cette these nous appliquons les algebres L(g,n,H) a la topologie en basses dimensions (groupe de diffeotopie… 
1 Citations

Holonomy and (stated) skein algebras in combinatorial quantization

The algebra $\mathcal{L}_{g,n}(H)$ was introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche and quantizes the character variety of the Riemann surface $\Sigma_{g,n}\!\setminus\! D$ ($D$ is an

References

SHOWING 1-10 OF 52 REFERENCES

Invariant functions on Lie groups and Hamiltonian flows of surface group representations

Si π est le groupe fondamental d'une surface orientee fermee S et G est un groupe de Lie satisfaisant des conditions tres generales, alors l'espace Hom (π,G)/G des classes de conjugaison de

Braided Groups and Quantum Fourier Transform

Abstract We show that acting on every finite-dimensional factorizable ribbon Hopf algebra H there are invertible operators S , T obeying the modular identities ( S T )3 = λ S 2, where λ is a

Invariants of 3-manifolds and projective representations of mapping class groups via quantum groups at roots of unity

An example of a finite dimensional factorizable ribbon Hopf ℂ-algebra is given by a quotientH=uq(g) of the quantized universal enveloping algebraUq(g) at a root of unityq of odd degree. The mapping

A primer on mapping class groups

Given a compact connected orientable surface S there are two fundamental objects attached: a group and a space. The group is the mapping class group of S, denoted by Mod(S). This group is defined by

Lectures on Representations of Surface Groups

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and

Quantum Groups

This thesis consists of four papers. In the first paper we present methods and explicit formulas for describing simple weight modules over twisted generalized Weyl algebras. Under certain conditions

Ribbon Abelian Categories as Modular Categories

A category N of labeled (oriented) trivalent graphs (nets) or ribbon graphs is extended by new generators called fusing, braiding, twist and switch with relations which can be called Moore-Seiberg
...