Mapping adenosine cyclic 3',5'-phosphate binding sites on type I and type II adenosine cyclic 3',5'-phosphate dependent protein kinases using ribose ring and cyclic phosphate ring analogues of adenosine cyclic 3',5'-phosphate.

@article{Yagura1981MappingAC,
  title={Mapping adenosine cyclic 3',5'-phosphate binding sites on type I and type II adenosine cyclic 3',5'-phosphate dependent protein kinases using ribose ring and cyclic phosphate ring analogues of adenosine cyclic 3',5'-phosphate.},
  author={Tatsuo Yagura and John P. Miller},
  journal={Biochemistry},
  year={1981},
  volume={20 4},
  pages={879-87}
}
A series of adenosine cyclic 3',5'-phosphate (cAMP) derivatives containing modifications or substitutions in either the 2',3',4', or 5' position or the phosphate were examined for their abilities to activate type I isozymes of cAMP-dependent protein kinase (PK I) from rabbit or porcine skeletal muscle and type II isozymes of cAMP-dependent protein kinase (PK II) from bovine brain and heart. The studies revealed that the activation of both PK I and PK II isozymes requires a 2'-hydroxyl group in… CONTINUE READING