Magnetic Field Elements at High Latitude: Lifetime and Rotation Rate

Abstract

Using one-minute cadence time-series full disk magnetograms taken by the SOHO/MDI, we have studied the magnetic field elements at high latitude (poleward of 65° in latitude). It is found that an average lifetime of the magnetic field elements is 16.5 h during solar minimum, much longer than that during solar maximum (7.3 h). During solar minimum, number of the magnetic field elements with the dominant polarity is about 3 times as that of the opposite polarity elements. Their lifetime is 21.0 h on average, longer than that of the opposite polarity elements (2.3 h). It is also found that the lifetime of the magnetic field elements is related with their size, consistent with the magnetic field elements in the quiet sun at low latitude found by Hagenaar et al. (Astrophys. J. 511:932, 1999). During solar maximum, the polar regions are equally occupied by magnetic field elements with both polarities, and their lifetimes are roughly the same on average. No evidence shows there is a correlation between the lifetime and size of the magnetic field elements. Using an image cross-correlation method, we also measure the solar rotation rate at high latitude, up to 85° in latitude. The rate is ω = 2.914 − 0.342 sin φ − 0.482 sin φ μrad s−1 sidereal. It agrees with previous studies using the spectroscopic and image cross-correlation methods, and also agrees with the results using the element tracking method when the sample of the tracked magnetic field elements is large. The consistency of those results strongly suggests that this rate at high latitude is reliable.

8 Figures and Tables

Cite this paper

@inproceedings{Liu2009MagneticFE, title={Magnetic Field Elements at High Latitude: Lifetime and Rotation Rate}, author={Yi Liu and J. Zhao}, year={2009} }