MONTGOMERY IDENTITIES FOR FRACTIONAL INTEGRALS AND RELATED FRACTIONAL INEQUALITIES

@inproceedings{Ghasemi2009MONTGOMERYIF,
  title={MONTGOMERY IDENTITIES FOR FRACTIONAL INTEGRALS AND RELATED FRACTIONAL INEQUALITIES},
  author={Amirmahdi Ghasemi},
  year={2009}
}
In the present work we develop some integral identities and inequalities for the fractional integral. We have obtained Montgomery identities for fractional integrals and a generalization for double fractional integrals. We also produced Ostrowski and Grüss inequalities for fractional integrals. 

From This Paper

Topics from this paper.

Citations

Publications citing this paper.
Showing 1-10 of 12 extracted citations

New W−weighted concepts for continuous random variables with applications

Zoubir Dahmani, Aboubakr Essedik Bouziane, +5 authors Mehmet Zeki Sarikaya
2017
View 3 Excerpts

Fractional integral inequalities for continuous random variables

Zoubir Dahmania, Zoubir Dahmani
2014
View 2 Excerpts

References

Publications referenced by this paper.
Showing 1-10 of 10 references

Differentiation Inequalities

G. ANASTASSIOU, Fractional
J. Inequal. Pure and Appl. Math • 2009

VUKELI Ć, Montgomery identities for function of two variables

A. J. PĚCARIĆ
J. Math. Anal • 2007

DRAGOMIR, An Ostrowski type inequality for double integrals and applications for cubature formulae

S.S.N.S. BARNETT
Soochow J. Math., • 2001
View 1 Excerpt

BARNETT AND J. ROUMELIOTIS, An inequlity of the Ostrowski type for double integrals and applications for cubature formulae, Tamsui Oxf

S. S. DRAGOMIR, N.S.P. CERONE
J. Math • 2000
View 1 Excerpt

PĚCARIĆ AND A.M. FINK, Inequalities for Functions and their Integrals and Derivatives

J.E.D.S. MITRINOVIĆ
1994
View 1 Excerpt

PĚCARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis

J.E.D.S. MITRINOVIĆ
Kluwer Academic, • 1993
View 1 Excerpt

On theČebyšev inequality,Bul

J. E. PĚCARIĆ
Şti. Tehn. Inst. Politehn. "Traian Vuia" • 1980
View 1 Excerpt

Über die absolutabweichung einer differentiebaren funktion von ihren integralmittelwert,Comment

A. OSTROWSKI
Math. Helv., • 1938
View 1 Excerpt

Über das maximum des absoluten betrages von [1/(b− a)] ∫ b a f(x)g(x) dx− [1/(b− a)2] ∫ b a f(x) dx ∫ b a g(x) dx, Math

G. GRÜSS
1935
View 1 Excerpt