• Corpus ID: 11892548

MOISHEZON SPACES IN RIGID GEOMETRY

@inproceedings{Conrad2010MOISHEZONSI,
  title={MOISHEZON SPACES IN RIGID GEOMETRY},
  author={Brian Conrad},
  year={2010}
}
We prove that all proper rigid-analytic spaces with “enough” algebraically independent meromorphic functions are algebraic (in the sense of proper algebraic spaces). This is a non-archimedean analogue of a result of Artin over C. 
Pr\"ufer algebraic spaces
This is the first in a series of two papers concerned with relative birational geometry of algebraic spaces. In this paper, we study Pr\"ufer spaces and Pr\"ufer pairs of algebraic spaces that
Rigid Character Groups, Lubin-Tate Theory, and (𝜑,Γ)-Modules
The construction of the $p$-adic local Langlands correspondence for $\mathrm{GL}_2(\mathbf{Q}_p)$ uses in an essential way Fontaine's theory of cyclotomic $(\varphi,\Gamma)$-modules. Here
UNIVERSAL PROPERTY OF NON-ARCHIMEDEAN ANALYTIFICATION
1.1. Motivation. Over C and over non-archimedean fields, analytification of algebraic spaces is defined as the solution to a quotient problem. Such analytification is interesting, since in the proper

References

SHOWING 1-10 OF 45 REFERENCES
Spectral Theory and Analytic Geometry over Non-Archimedean Fields
The spectrum of a commutative Banach ring Affinoid spaces Analytic spaces Analytic curves Analytic groups and buildings The homotopy type of certain analytic spaces Spectral theory Perturbation
RESOLUTION THEOREMS FOR COMPACT COMPLEX SPACES WITH A SUFFICIENTLY LARGE FIELD OF MEROMORPHIC FUNCTIONS
The Chow lemma and theorems on the resolution of singularities and of the points of indeterminacy of meromorphic mappings are proved for n-dimensional compact complex spaces with n algebraically
Variation de la dimension relative en géométrie analytique p-adique
  • A. Ducros
  • Mathematics
    Compositio Mathematica
  • 2007
Abstract Let k be a complete, non-Archimedean valued field (the trivial absolute value is allowed) and let φ:X→Y be a morphism between two Berkovich k-analytic spaces; we show that, for any integer
Les espaces de Berkovich sont excellents
In this paper, we first study the local rings of a Berkovich analytic space from the point of view of commutative algebra. We show that those rings are excellent ; we introduce the notion of a an
RELATIVE AMPLENESS IN RIGID-ANALYTIC GEOMETRY
1.1. Motivation. The aim of this paper is to develop a rigid-analytic theory of relative ampleness for line bundles, and to record some applications to rigid-analytic faithfully flat descent for
Modular Curves and Rigid-Analytic Spaces
1.1. Motivation. In the original work of Katz on p-adic modular forms [Kz], a key insight is the use of Lubin’s work on canonical subgroups in 1-parameter formal groups to define a relative theory of
Étale cohomology for non-Archimedean analytic spaces
© Publications mathématiques de l’I.H.É.S., 1993, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
Irreducible components of rigid spaces
© Annales de l’institut Fourier, 1999, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions
Un résultat de connexité pour les variétés analytiques p-adiques: privilège et noethérianité
Abstract Let k be a non-Archimedean field, let X be a k-affinoid space and let f1,…,fn, with $n\in \mathbb {N}^*$, be analytic functions over X. If X is irreducible, we prove that the analytic domain
Éléments de géométrie algébrique
© Publications mathématiques de l’I.H.É.S., 1965, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
...
...