MODULAR THEORY AND GEOMETRY

@inproceedings{Schroer1998MODULARTA,
  title={MODULAR THEORY AND GEOMETRY},
  author={Bert Schroer and H.-W. Wiesbock},
  year={1998}
}
  • Bert Schroer, H.-W. Wiesbock
  • Published 1998
  • Mathematics, Physics
  • In this communication we present some new results on modular theory in the context of quantum field theory. In doing this we develop some new proposals how to generalize concepts of finite dimensional geometrical actions to infinite dimensional "hidden" symmetries. The latter are of a purely modular origin and remain hidden in any quantization approach. The spirit of this work is more on a programmatic side, with many details remaining to be elaborated. 

    Citations

    Publications citing this paper.
    SHOWING 1-10 OF 14 CITATIONS

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 19 REFERENCES

    Yngvason ” A Note on Essential Duality ”

    • J. Yng
    • Comm . Math . Phys .
    • 1998

    Wiesbrock ” Modular Intersections of vonNeumann Algebras in Quantum Field Theory ”

    • H.-W.
    • Lett . Math . Phys .
    • 1997

    Borchers ” HalfSided Modular Inclusions and the Construction of the Poincaré Group ”

    • H.-J.
    • Comm . Math . Physics
    • 1996

    Borchers ” On the use of modular groups in quantum field theory

    • H.-J.
    • Ann . Henri Poincaré
    • 1995

    Borchers ” On the use of modular groups in quantum field theory

    • H.-J.
    • Ann . Henri Poincaré
    • 1995