MODULAR COCYCLES AND LINKING NUMBERS

@inproceedings{Duke2016MODULARCA,
  title={MODULAR COCYCLES AND LINKING NUMBERS},
  author={William Duke and {\"O}zlem Imamoḡlu and {\'A}rpad T{\'o}th},
  year={2016}
}
It is known that the 3-manifold SL(2,Z)\ SL(2,R) is diffeomorphic to the complement of the trefoil knot in S. E. Ghys showed that the linking number of this trefoil knot with a modular knot is given by the Rademacher symbol, which is a homogenization of the classical Dedekind symbol. The Dedekind symbol arose historically in the transformation formula of the logarithm of Dedekind’s eta function under SL(2,Z). In this paper we give a generalization of the Dedekind symbol associated to a fixed… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 37 references

Dynamical Systems with Two Degrees of Freedom.

Proceedings of the National Academy of Sciences of the United States of America • 2010
View 11 Excerpts
Highly Influenced

Gesammelte mathematische Werke

R. Dedekind
Chelsea Publishing Co., New York • 1968
View 5 Excerpts
Highly Influenced

On the growth of entire automorphic integrals

Knopp, I Marvin
Results Math • 1985
View 6 Excerpts
Highly Influenced

Linking numbers of modular geodesics

C. J. Mozzochi
Israel J. Math • 2013

Enlacement entre géodésiques sur une orbifold. (French. English, French summary) [Linking between geodesics on an orbifold] C

Dehornoy, Pierre
R. Math. Acad. Sci. Paris • 2012
View 3 Excerpts

Grenzkreisgruppen und kettenbruchartige Algorithmen . ( German ) Acta Arith

M. Eichler
Abh . Math . Semin . Univ . Hambg . • 2010