MAXWELL DUALITY, LORENTZ INVARIANCE, AND TOPOLOGICAL PHASE

@article{Dowling1999MAXWELLDL,
  title={MAXWELL DUALITY, LORENTZ INVARIANCE, AND TOPOLOGICAL PHASE},
  author={Jonathan P. Dowling and Colin P. Williams and Jet propulsion Laboratory and California Institute of Technology Applied Physics Laboratory and Johns Hopkins University},
  journal={Physical Review Letters},
  year={1999},
  volume={83},
  pages={2486-2489}
}
We discuss the Maxwell electromagnetic duality relations between the Aharonov-Bohm, Aharonov-Casher, and He-McKellar-Wilkens topological phases, which allows a unified description of all three phenomena. 

Figures from this paper

Aharonov–Bohm types of phases in Maxwell and Yang–Mills field theories
I review the topological phases of the Aharonov–Bohm type associated with Maxwell and Yang–Mills fields.
Relativistic Anandan quantum phase in the Lorentz violation background
We study the influence of a classical background based on the violation of the Lorentz symmetry on the relativistic Anandan quantum phase. We show that the choice of the Lorentz symmetry violationExpand
Phase (or gauge) invariance and new field-free Aharonov-Bohm effects
Abstract.The criteria for phase invariance of quantum effects of the Aharonov-Bohm (AB) type are revised. Gauge invariance, duality and other properties of the electromagnetic interaction lead to newExpand
Classical Lagrangian and quantum phase of the dipole
The non-relativistic Lagrangians of the electric and magnetic dipole are derived consistently with classical electrodynamics. The corresponding velocity-dependent potential leads to a generalizedExpand
Geometric phases modified by a Lorentz-symmetry violation background
We analyze the nonrelativistic quantum dynamics of a single neutral spin-half particle, with nonzero magnetic and electric dipole moments, moving in an external electromagnetic field in the presenceExpand
Quantum holonomies for an electric dipole moment
Abstract In this Letter, we obtain the quantum holonomies for a neutral particle with a permanent electric dipole moment based on the analogue effects of the He–McKellar–Wilkens effect and the ScalarExpand
Interaction of the Dirac oscillator with the Aharonov–Bohm potential in (1+2)-dimensional Gürses space–time backgrounds
Abstract In this paper, we study the relativistic quantum dynamics of spin- 1 2 particles interact with electromagnetic potentials in three-dimensional space–time. We solve the Dirac oscillatorExpand
Induced electric dipole in a quantum ring
Abstract In this contribution, we investigate the quantum dynamics of a neutral particle confined in a quantum ring potential. We use two different field configurations for induced electric dipole inExpand
Dual Aharonov–Bohm Effect
The quantum dynamics of a magnetic monopole in the presence of a thin electric flux is investigated. We discuss the dual Aharonov–Bohm effect and we analyze this in the point of view of the dualityExpand
Relativistic geometric quantum phases from the Lorentz symmetry violation effects in the CPT-even gauge sector of Standard Model Extension
We discuss the appearance of relativistic geometric quantum phases for a Dirac neutral particle based on possible scenarios of the Lorentz symmetry violation background in the CPT-even gauge sectorExpand
...
1
2
3
4
5
...

References

SHOWING 1-10 OF 32 REFERENCES
The Theory of Atomic Spectra
1. Introduction 2. The quantum mechanical method 3. Angular momentum 4. The theory of radiation 5. One-electron spectra 6. The central-field approximation 7. The Russell-Saunders case: energy levelsExpand
Classical Electrodynamics (2nd edn)
J D Jackson Chichester: J Wiley 1975 pp xxii + 848 price £10.75 The present edition of this now classic text offers substantial refinements and improvements over the first edition and includes someExpand
Phys
  • Rev. A 47, 3424 (1993); M. Wilkens, Phys. Rev. Lett. 72, 5
  • 1994
Chin
  • Phys. Lett. 12, 327 (1995); J. Yi, G. S. Jeon, and M. Y. Choi, Phys. Rev. B 52, 7838 (1995); H. Q. Wei, R. S. Han, and X. Q. Wei, Phys. Rev. Lett. 75, 2071 (1995); C. C. Chen, Phys. Rev. A 51, 2611 (1995); U. Leonhart and M. Wilkens, Europhys. Lett. 42, 365
  • 1998
Phys
  • Rev. Lett. 81, 1533 (1998); M. Wilkens, Phys. Rev. Lett. 81, 1534
  • 1998
Phys. Rev. Lett. Phys. Rev. Lett
  • Phys. Rev. Lett. Phys. Rev. Lett
  • 1998
Phys
  • Rev. Lett. 77, 1656 (1996); H. Q. Wei, X. Q. Wei, and R. S. Han, Phys. Rev. Lett. 77, 1657
  • 1996
Phys. Rev. Lett. Phys. Rev. Lett
  • Phys. Rev. Lett. Phys. Rev. Lett
  • 1996
Phys. Rev. B Phys. Rev. Lett. Phys. Rev. A
  • Phys. Rev. B Phys. Rev. Lett. Phys. Rev. A
  • 1995
Phys. Rev. B Phys. Rev. Lett. Phys. Rev. A Europhys. Lett
  • Phys. Rev. B Phys. Rev. Lett. Phys. Rev. A Europhys. Lett
  • 1995
...
1
2
3
4
...