MAP kinase upregulation after hematopoietic differentiation: role of chemotaxis.

Abstract

Mitogen-activated protein kinase (MAPK) isoform p42 is known to be active in exponentially growing cells at several points of the cell cycle. A high basal activity was present in three cell lines representative of immature myeloid cells tested: uHL-60, AML-14, and MPD. However, DMSO-induced differentiation of HL-60 cells (dHL-60) and subsequent expression of the neutrophilic phenotype occurred with a concomitant reduction on the basal level of MAPK activity. Simultaneously, extracellular stimuli like the cytokine granulocyte/macrophage colony-stimulating factor (GM-CSF) induced a fast (<10 min) and robust response. In terms of MAPK activity, the more mature the cell was, the higher the corresponding activity, in the three differentiation series considered: AML-14 < 3D10; MPD < G-MPD; uHL-60 < dHL-60 < neutrophils. Interestingly, peripheral blood neutrophils expressed the highest (16-fold) MAPK activation level in response to GM-CSF. Finally, using the specific MAPK inhibitor PD-98059, we demonstrated that MAPK activation is needed for neutrophil chemotaxis toward interleukin-8 and its priming by GM-CSF. Since neutrophils are terminally differentiated cells, GM-CSF does not serve a purpose in proliferation, and it must trigger the recruitment of selective signal transduction pathways particular to that final stage that includes enhanced physiological functions such as chemotaxis.

Cite this paper

@article{Lehman2001MAPKU, title={MAP kinase upregulation after hematopoietic differentiation: role of chemotaxis.}, author={Jason A. Lehman and Cassandra C Paul and Michael Baumann and Julian Gomez-Cambronero}, journal={American journal of physiology. Cell physiology}, year={2001}, volume={280 1}, pages={C183-91} }