Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory
@article{Benettin1980LyapunovCE, title={Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory}, author={G. Benettin and L. Galgani and A. Giorgilli and J. Strelcyn}, journal={Meccanica}, year={1980}, volume={15}, pages={9-20} }
SommarioDa diversi anni gli esponenti caratteristici di Lyapunov sono divenuti di notevole interesse nello studio dei sistemi dinamici al fine di caratterizzare quantitativamente le proprietà di stocasticità, legate essenzialmente alla divergenza esponenziale di orbite vicine. Si presenta dunque il problema del calcolo esplicito di tali esponenti, già risolto solo per il massimo di essi. Nel presente lavoro si dà un metodo per il calcolo di tutti tali esponenti, basato sul calcolo degli… CONTINUE READING
1,298 Citations
Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application
- Mathematics
- 1980
- 715
Truncations to 12, 14 and 18 modes of the Navier-Stokes equations on a two-dimensional torus
- Mathematics
- 1985
- 16
I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale
- Physics
- 2007
- PDF
On the Computation of Lyapunov exponents for discrete Time Series: Applications to Two-Dimensional symplectic and dissipative mappings
- Mathematics, Computer Science
- Int. J. Bifurc. Chaos
- 2000
- 8
The Lyapunov Characteristic Exponents and Their Computation
- Physics, Mathematics
- 2010
- 219
- Highly Influenced
- PDF
The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems
- Mathematics
- 2018
- 12
- PDF
References
SHOWING 1-10 OF 16 REFERENCES
Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application
- Mathematics
- 1980
- 715
Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy
- Physics
- 1978
- 110