# Lp inequalities for polynomials with restricted zeros

@article{Aziz1998LpIF, title={Lp inequalities for polynomials with restricted zeros}, author={Abdul Aziz and Wali Mohammad Shah}, journal={Proceedings Mathematical Sciences}, year={1998}, volume={108}, pages={63-68} }

- Published 1998
DOI:10.1007/BF03161313

AbstractLetP(z) be a polynomial of degreen which does not vanish in the disk |z|0 andk≥1,
$$\begin{gathered} \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {P^{(s)} (e^{i\theta } )} \right|^p d\theta } } \right\}^{1/p} \leqslant n(n - 1) \cdots (n - s + 1) B_p \hfill \\ \times \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {P(e^{i\theta } )} \right|^p d\theta } } \right\}^{1/p} , \hfill \\ \end{gathered} $$
where
$$B_p = \left\{ {\frac{1}{{2\pi }}\int_0^{2\pi } {\left| {k^s + e^{i\alpha… CONTINUE READING

#### Citations

##### Publications citing this paper.

## Inequalities for the Derivatives of a Polynomial

VIEW 6 EXCERPTS

CITES RESULTS

HIGHLY INFLUENCED