Lower extremity applications of functional neuromuscular stimulation.

  • R. J. Jaeger
  • Published 1992 in
    Assistive technology : the official journal of…

Abstract

Functional electrical stimulation (FES) applications in the lower extremity are common in research laboratories, but clinical applications are minimal. This review summarizes current knowledge with respect to clinical application. When electrical stimulation is used in clinical applications for functional movement such as standing and walking, it is typically applied in an open-loop manner; a predetermined stimulus pattern is delivered regardless of the consequences of the actual movement. Few clinical applications of FES involve closed-loop control because of the numerous difficulties involved in its application. As with any volitional muscle contraction, electrically stimulated muscle contractions will exhibit fatigue. Although the dynamics of fatigue may differ, electrically stimulated muscle contractions cannot be continuously sustained, and if the duty cycle is too severe, even alternating periods of rest and contraction cannot be sustained at a constant force level. The exact nature of fatigue is highly specific to the past history of the individual muscle and to the individual subject. Despite their intricate detail, quantitative modeling studies have not yet been applied extensively to clinical applications. Present implantable systems are not yet a viable option for clinical application. It is not clear whether more success with surface or percutaneous systems must first be achieved to justify implantation or whether greater improvements in implantable technology and surgical protocols are needed before implantable systems will become practical. It is clear that almost any reasonably designed stimulation protocol will increase muscle bulk. The existence of other therapeutic benefits and their cost/benefit ratios remain to be fully established. It is possible to stand through bilateral stimulation of the quadriceps. Using surface electrodes, this technique is achievable in any physical therapy clinic having minimal expertise in neuromuscular stimulation. FES-aided standing must be conducted as a research project with a protocol approved by the local institutional review board, as there are currently no FDA-approved stimulation devices for standing. Multichannel FES systems are not currently available for clinical application in the United States. This may change if the "Parastep" system receives FDA approval. Percutaneous and implanted systems are years away from commercialization and clinical availability. Hybrid systems, based primarily on the reciprocating gait orthosis (RGO), are presently the only clinically available form of walking that includes some form of FES assistance. The costs and benefits of adding FES to the RGO and the long-term user acceptance rate for these systems remain to be determined.

Statistics

02040'95'97'99'01'03'05'07'09'11'13'15'17
Citations per Year

193 Citations

Semantic Scholar estimates that this publication has 193 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Jaeger1992LowerEA, title={Lower extremity applications of functional neuromuscular stimulation.}, author={R. J. Jaeger}, journal={Assistive technology : the official journal of RESNA}, year={1992}, volume={4 1}, pages={19-30} }