Lower bound for the expected supremum of fractional Brownian motion using coupling
@inproceedings{Bisewski2022LowerBF, title={Lower bound for the expected supremum of fractional Brownian motion using coupling}, author={Krzysztof Bisewski}, year={2022} }
We derive a new theoretical lower bound for the expected supremum of drifted fractional Brownian motion with Hurst index H ∈ (0, 1) over (in)finite time horizon. Extensive simulation experiments indicate that our lower bound outperforms the Monte Carlo estimates based on very dense grids for H ∈ (0, 1 2 ). Additionally, we derive the PaleyWiener-Zygmund representation of a Linear Fractional Brownian motion and give an explicit expression for the derivative of the expected supremum at H = 1 2 in…
References
SHOWING 1-10 OF 31 REFERENCES
New and refined bounds for expected maxima of fractional Brownian motion
- MathematicsStatistics & Probability Letters
- 2018
Derivatives of sup-functionals of fractional Brownian motion evaluated at H=1/2
- Mathematics
- 2021
We consider a family of sup-functionals of (drifted) fractional Brownian motion with Hurst parameter H ∈ (0, 1). This family includes, but is not limited to: expected value of the supremum, expected…
Simulation paradoxes related to a fractional Brownian motion with small Hurst index
- Mathematics
- 2016
We consider the simulation of sample paths of a fractional Brownian motion with small values of the Hurst index and estimate the behavior of the expected maximum. We prove that, for each fixed $N$,…
Bounds for expected maxima of Gaussian processes and their discrete approximations
- Mathematics
- 2015
The paper deals with the expected maxima of continuous Gaussian processes that are Hölder continuous in -norm and/or satisfy the opposite inequality for the -norms of their increments. Examples of…
Multifractional Brownian Motion : Definition and Preliminary Results
- Mathematics
- 1995
We generalize the definition of the fractional Brownian motion of exponent $H$ to the case where $H$ is no longer a constant, but a function of the time index of the process. This allows us to model…
On limit distributions of estimators in irregular statistical models and a new representation of fractional Brownian motion
- MathematicsStatistics & Probability Letters
- 2018
Approximations for reflected fractional Brownian motion.
- MathematicsPhysical review. E
- 2019
The main findings concern closed-form approximations of the mean and variance, with a near-perfect fit, of fractional Brownian motion reflected at level 0.
Bounds for expected supremum of fractional Brownian motion with drift
- MathematicsJournal of Applied Probability
- 2021
Borders for the mean of the zero-mean, variance-normalized version of fractional Brownian motion with Hurst parameter H\in(0,1) are provided and a new upper bound for themean is derived, tight around H=\frac{1}{2}$ .
Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas
- Mathematics
- 2007
This survey is a collection of various results and formulas by
different authors
on the areas (integrals) of five related processes, viz. Brownian
motion, bridge, excursion, meander and double…