Low-lying Zeros of L-functions and Random Matrix Theory

@inproceedings{Rubinstein2001LowlyingZO,
  title={Low-lying Zeros of L-functions and Random Matrix Theory},
  author={Michael Rubinstein},
  year={2001}
}
By looking at the average behavior (n-level density) of the low-lying zeros of certain families of L-functions, we find evidence, as predicted by function field analogs, in favor of a spectral interpretation of the nontrivial zeros in terms of the classical compact groups. 
Highly Cited
This paper has 44 citations. REVIEW CITATIONS

From This Paper

Figures, tables, and topics from this paper.

Explore Further: Topics Discussed in This Paper

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Symmetric square L-functions on GL(r )

D. BUMP, D. GINZBURG
Ann. of Math. (2) 136 • 1992
View 7 Excerpts
Highly Influenced

Random Matrices

N. M. KATZ, P. SARNAK
Frobenius Eigenvalues, and Monodromy, Amer. Math. Soc. Colloq. Publ. 45, Amer. Math. Soc., Providence • 1999
View 2 Excerpts

Evidence for a spectral interpretation of the zeros of L-functions

M. RUBINSTEIN
Ph.D. thesis, Princeton Univ. • 1998

A motivated introduction to the Langlands program” in Advances in Number Theory (Kingston

M. R. MURTY
Ontario, 1991) , Oxford Sci. Publ., Oxford Univ. Press, New York • 1993

Small zeros of quadratic L-functions

A. E. ÖZLÜK, C. SNYDER
Bull. Austral. Math. Soc.47 • 1993

The Distribution of Prime Numbers

A. E. INGHAM
Cambridge Math. Lib., Cambridge Univ. Press, Cambridge • 1990
View 2 Excerpts

On the mean value of L (1/2

M. JUTILA
χ) for real characters, Analysis1 • 1981

The pair correlation of zeros of the zeta function” in A alytic Number Theory (St

H. L. MONTGOMERY
Louis, Mo., 1972) , Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence • 1973

ODLYZKO , On the distribution of spacings between zeros of the zeta function

M. A.
Math . Comp .

Similar Papers

Loading similar papers…