Low intermediate scales for leptogenesis in supersymmetric SO(10) grand unified theories
@article{Majee2007LowIS, title={Low intermediate scales for leptogenesis in supersymmetric SO(10) grand unified theories}, author={Swarup Kumar Majee and M. K. Parida and Amitava Raychaudhuri and Utpal Sarkar}, journal={Physical Review D}, year={2007}, volume={75}, pages={075003} }
A low intermediate scale within minimal supersymmetric SO(10) GUTs is a desirable feature to accommodate leptogenesis. We explore this possibility in models where the intermediate gauge symmetry breaks spontaneously by (a) doublet Higgs scalars and also (b) by triplets. In both scenarios, gauge coupling unification requires the scale of left-right symmetry breaking (M{sub R}) to be close to the unification scale. This will entail unnaturally small neutrino Yukawa couplings to avoid the…
26 Citations
Unification predictions with or without supersymmetry
- Physics
- 2020
Supersymmetric (SUSY) grand unified theories (GUTs) appear to be best motivated for understanding strong, weak and electromagnetic interactions of nature. We briefly review emergence of new formulas…
LHC and lepton flavour violation phenomenology of a left-right extension of the MSSM
- Physics
- 2010
We study the phenomenology of a supersymmetric left-right model, assuming minimal supergravity boundary conditions. Both left-right and (B-L) symmetries are broken at an energy scale close to, but…
Triplet leptogenesis, type-II seesaw dominance, intrinsic dark matter, vacuum stability and proton decay in minimal SO(10) breakings
- PhysicsJournal of Cosmology and Astroparticle Physics
- 2020
We implement type-II seesaw dominance for neutrino mass and baryogenesis through heavy scalar triplet leptogenesis in a class of minimal non-supersymmetric SO(10) models where matter parity as…
Standard coupling unification in SO(10), hybrid seesaw neutrino mass and leptogenesis, dark matter, and proton lifetime predictions
- Physics
- 2016
A bstractWe discuss gauge coupling unification of SU(3)C × SU(2)L × U(1)Y descending directly from non-supersymmetric SO(10) while providing solutions to the three out-standing problems of the…
New weak-scale physics from SO(10) with high-scale supersymmetry
- PhysicsPhysical Review D
- 2018
Gauge coupling unification and the stability of the Higgs vacuum are among two of the cherished features of low-energy supersymmetric models. Putting aside questions of naturalness, supersymmetry…
Some Explorations of New Physics Beyond The Standard Model
- Physics
- 2008
Some new physics beyond the Standard Model of particle physics, like Supersymmetry, Extra-dimensions etc., and their effect on the nature of different standard model phenomena are explored in this…
SO(10) grand unification in light of recent LHC searches and colored scalars at the TeV-scale
- Physics
- 2015
We analyze the compatibility of the recent LHC signals and the TeV-scale left–right model(s) in the minimal nonsupersymmetric SO(10) framework. We show that the models in which the Higgs content is…
Fermion masses and mixings, Leptogenesis and Baryon number violation in Pati-Salam model
- PhysicsNuclear Physics B
- 2019
Flavor unification, dark matter, proton decay and other observable predictions with low-scale $S_4$ symmetry
- Physics
- 2011
We show how gauge coupling unification is successfully implemented through nonsupersymmetric grand unified theory, SO(10)xG{sub f}(G{sub f}=S{sub 4},SO(3){sub f},SU(3){sub f}), using a low-scale…
Cosmology in a supersymmetric model with gauged B-L symmetry
- Physics
- 2007
We consider salient cosmological features of a supersymmetric model which is left-right symmetric and therefore possessing gauged B - L symmetry. The requirement of breaking parity and also obtaining…
References
SHOWING 1-10 OF 28 REFERENCES
Field Theory in Elementary Particles
- PhysicsStudies in the Natural Sciences
- 1983
The Present State of Gravitational Theory.- QCD - Prospects and Problems.- Grand Unification: A Status Report.- Majorana Neutrinos - Their Electromagnetic Properties and Neutral Current Weak…
Phys
- Rev. D10 (1974) 275; R. N. Mohapatra and J. C. Pati, Phys. Rev. D11 (1975) 566; R. N. Mohapatra and J. C. Pati, Phys. Rev. D11 (1975) 2558; G. Senjanović and R. N. Mohapatra, Phys. Rev. D12
- 1975
Phys
- Rev. D70 (2004) 035007; C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanović, and F. Vissani, Phys. Lett. B588 (2004) 196; T. Fukuyama, A. Ilakovic, T. Kikuchi, S. Meljanac and N. Okada, J. Math. Phys. 46 (2005) 033505; Eur. Phys. J. C42
- 2005
Phys
- Rev. Lett. 52 (1984) 1072; Phys. Rev. D30 (1984) 1052; D. Chang, R. N. Mohapatra, J. M. Gipson, R. E. Marshak and M. K. Parida, Phys. Rev. D31
- 1985
Eur
- Phys. J C28 (2002) 353; M. K. Parida and B. D. Cajee, Eur. Phys. J C44
- 2005
Phys
- Rev. Lett. 90 (2003) 051802; H. S. Goh, R. N. Mohapatra and S. P. Ng, Phys. Lett. B570 (2003) 215; Phys. Rev. D68 (2003) 115008; S. Bertolini, M. Frigerio and M. Malinsky, Phys. Rev. D70
- 2004
Nucl
- Phys. B406
- 1993
Phys
- Rev. D47
- 1993
Phys
- Rev. Lett. 70
- 1993
Phys
- Rev. D70 (2004) 075022; K. S. Babu and C. Macesanu, Phys. Rev. D72
- 2005