Low Regularity Semi-linear Wave Equations

@inproceedings{Tao1999LowRS,
  title={Low Regularity Semi-linear Wave Equations},
  author={Terence Tao},
  year={1999}
}
We prove local well-posedness results for the semi-linear wave equation for data in H γ , 0 < γ < n−3 2(n−1) , extending the previously known results for this problem. The improvement comes from an introduction of a two-scale Lebesgue space X r,p k . 

From This Paper

Figures, tables, results, connections, and topics extracted from this paper.
11 Extracted Citations
14 Extracted References
Similar Papers

Referenced Papers

Publications referenced by this paper.
Showing 1-10 of 14 references

Low regularity local solutions for field equations

  • M. Bezard M. Beals
  • Comm . Partial Differential Equations
  • 1996

A Sharp Counterexample to Local Existence of Low Regularity Solutions to Non - linear Wave Equations

  • T. Tao M. Keel, Endpoint Strichartz Estimates, H. Lindblad
  • Duke math J .
  • 1995

Generalized Strichartz Inequalities for the Wave Equation

  • J. Ginebre, G. Velo
  • Jour . Func . Anal .
  • 1995

Local Smoothing of Fourier Integrals and CarlesonSjölin Estimates

  • A. Seeger, C. D. Sogge
  • Jour . Func . Anal .
  • 1995

The Cauchy problem for the Kortewegde Vries equation in Sobolev spaces of negative indices

  • C. E. Kenig, G. Ponce, L. Vega
  • Weak and Yet Weaker Solutions of Semilinear Wave…
  • 1994

On Existence and Scattering with Minimal Regularity for Semilinear Wave Equations

  • C. D. Sogge H. Lindblad
  • Duke Math J .
  • 1993

Smoothing estimates for null forms and application

  • M. Machedon S. Klainerman
  • Duke Math J .
  • 1993

Propogation of singularities and maximal functions in the plane

  • C. D. Sogge
  • Invent . Math .
  • 1991

Self - Spreading and strength of Singularities for solutions to semilinear wave equations

  • M. Beals
  • Annals of Math
  • 1983

Similar Papers

Loading similar papers…