Lovastatin lactone may improve irritable bowel syndrome with constipation (IBS-C) by inhibiting enzymes in the archaeal methanogenesis pathway

Abstract

UNLABELLED Methane produced by the methanoarchaeon Methanobrevibacter smithii ( M. smithii) has been linked to constipation, irritable bowel syndrome with constipation (IBS-C), and obesity. Lovastatin, which demonstrates a cholesterol-lowering effect by the inhibition of HMG-CoA reductase, may also have an anti-methanogenesis effect through direct inhibition of enzymes in the archaeal methanogenesis pathway. We conducted protein-ligand docking experiments to evaluate this possibility. Results are consistent with recent clinical findings. METHODS F420-dependent methylenetetrahydromethanopterin dehydrogenase ( mtd), a key methanogenesis enzyme was modeled for two different methanogenic archaea: M. smithii and Methanopyrus kandleri. Once protein models were developed, ligand-binding sites were identified. Multiple ligands and their respective protonation, isomeric and tautomeric representations were docked into each site, including F420-coenzyme (natural ligand), lactone and β-hydroxyacid forms of lovastatin and simvastatin, and other co-complexed ligands found in related crystal structures. RESULTS 1) Generally, for each modeled site the lactone form of the statins had more favorable site interactions compared to F420; 2) The statin lactone forms generally had the most favorable docking scores, even relative to the native template PDB ligands; and 3) The statin β-hydroxyacid forms had less favorable docking scores, typically scoring in the middle with some of the F420 tautomeric forms. Consistent with these computational results were those from a recent phase II clinical trial ( NCT02495623) with a proprietary, modified-release lovastatin-lactone (SYN-010) in patients with IBS-C, which showed a reduction in symptoms and breath methane levels, compared to placebo. CONCLUSION The lactone form of lovastatin exhibits preferential binding over the native-F420 coenzyme ligand in silico and thus could inhibit the activity of the key M. smithii methanogenesis enzyme mtd in vivo. Statin lactones may thus exert a methane-reducing effect that is distinct from cholesterol lowering activity, which requires HMGR inhibition by statin β-hydroxyacid forms.

DOI: 10.12688/f1000research.8406.3

Extracted Key Phrases

7 Figures and Tables

Cite this paper

@inproceedings{Muskal2016LovastatinLM, title={Lovastatin lactone may improve irritable bowel syndrome with constipation (IBS-C) by inhibiting enzymes in the archaeal methanogenesis pathway}, author={Steven M. Muskal and Joe Sliman and John F Kokai-Kun and Mark Pimentel and Vince J. Wacher and Klaus Gottlieb and Obdulia Rabal and Dusica Vidovic and Rolf Thauer}, booktitle={F1000Research}, year={2016} }