Loop Correlations in Random Wire Models
@article{Benassi2019LoopCI, title={Loop Correlations in Random Wire Models}, author={Costanza Benassi and Daniel Ueltschi}, journal={Communications in Mathematical Physics}, year={2019}, volume={374}, pages={525-547} }
We introduce a family of loop soup models on the hypercubic lattice. The models involve links on the edges, and random pairings of the link endpoints on the sites. We conjecture that loop correlations of distant points are given by Poisson–Dirichlet correlations in dimensions three and higher. We prove that, in a specific random wire model that is related to the classical XY spin system, the probability that distant sites form an even partition is given by the Poisson–Dirichlet counterpart.
12 Citations
Uniformly positive correlations in the dimer model and phase transition in lattice permutations on Z, d > 2, via reflection positivity
- Mathematics
- 2019
Our first main result is that correlations between monomers in the dimer model in Z do not decay to zero when d > 2. This is the first rigorous result about correlations in the dimer model in…
The interchange process with reversals on the complete graph
- MathematicsElectronic Journal of Probability
- 2019
We consider an extension of the interchange process on the complete graph, in which a fraction of the transpositions are replaced by `reversals'. The model is motivated by statistical physics, where…
An elementary proof of phase transition in the planar XY model
- Physics
- 2021
Using elementary methods we obtain a power-law lower bound on the twopoint function of the planar XY spin model at low temperatures. This was famously first rigorously obtained by Fröhlich and…
Site-Monotonicity Properties for Reflection Positive Measures with Applications to Quantum Spin Systems
- Mathematics
- 2020
We consider a general statistical mechanics model on a product of local spaces and prove that, if the corresponding measure is reflection positive, then several site-monotonicity properties for the…
Macroscopic loops in the $3d$ double-dimer model
- Mathematics
- 2022
The double dimer model is defined as the superposition of two independent uniformly distributed dimer covers of a graph. Its configurations can be viewed as disjoint collections of selfavoiding…
Uniformly positive correlations in the dimer model and phase transition in lattice permutations on $\mathbb{Z}^d$, $d > 2$, via reflection positivity
- Mathematics
- 2019
Our first main result is that correlations between monomers in the dimer model in $\mathbb{Z}^d$ do not decay to zero when $d > 2$. This is the first rigorous result about correlations in the dimer…
Griffiths inequalities for the $O(N)$-spin model
- Mathematics
- 2022
We prove Griffiths inequalities for the O ( N )-spin model with inhomogeneous coupling constants and external magnetic field for any N ≥ 2. This is achieved by using a representation of O ( N )-spins in…
Site Monotonicity and Uniform Positivity for Interacting Random Walks and the Spin O(N) Model with Arbitrary N
- MathematicsCommunications in Mathematical Physics
- 2019
We provide a uniformly-positive point-wise lower bound for the two-point function of the classical spin $O(N)$ model on the torus of $\mathbb{Z}^d$, $d \geq 3$, when $N \in \mathbb{N}_{>0}$ and the…
Macroscopic loops in the Bose gas, Spin O(N) and related models
- Mathematics, Computer Science
- 2022
This work approximate Z by finite boxes and proves that, given any two vertices whose distance is proportional to the diameter of the box, the probability of observing a loop visiting both is uniformly positive.
Uniformly Positive Correlations in the Dimer Model and Macroscopic Interacting Self‐Avoiding Walk in ℤd, d ≥ 3
- MathematicsCommunications on Pure and Applied Mathematics
- 2021
Our first main result is that correlations between monomers in the dimer model in ℤd do not decay to 0 when d>2 . This is the first rigorous result about correlations in the dimer model in dimensions…
References
SHOWING 1-10 OF 51 REFERENCES
A numerical study of the 3D random interchange and random loop models
- Mathematics
- 2015
We have studied numerically the random interchange model and related loop models on the three-dimensional cubic lattice. We have determined the transition time for the occurrence of long loops. The…
Random loop representations for quantum spin systems
- Physics
- 2013
We describe random loop models and their relations to a family of quantum spin systems on finite graphs. The family includes spin 1/2 Heisenberg models with possibly anisotropic spin interactions and…
Random Permutations of a Regular Lattice
- Mathematics
- 2013
Spatial random permutations were originally studied due to their connections to Bose–Einstein condensation, but they possess many interesting properties of their own. For random permutations of a…
Large cycles in random permutations related to the Heisenberg model
- Mathematics, Physics
- 2015
We study the weighted version of the interchange process where a permutation receives weight theta(#cycles). For theta = 2 this is Toth's representation of the quantum Heisenberg ferromagnet on the…
Length distributions in loop soups.
- MathematicsPhysical review letters
- 2013
The resulting joint length distribution for macroscopic loops is Poisson-Dirichlet with a parameter θ fixed by the loop fugacity and by symmetries of the ensemble.
The interchange process with reversals on the complete graph
- MathematicsElectronic Journal of Probability
- 2019
We consider an extension of the interchange process on the complete graph, in which a fraction of the transpositions are replaced by `reversals'. The model is motivated by statistical physics, where…
Lectures on the Spin and Loop O(n) Models
- PhysicsSojourns in Probability Theory and Statistical Physics - I
- 2019
The classical spin O(n) model is a model on a d-dimensional lattice in which a vector on the \((n-1)\)-dimensional sphere is assigned to every lattice site and the vectors at adjacent sites interact…
Decay of Correlations in 2D Quantum Systems with Continuous Symmetry
- Mathematics
- 2016
We study a large class of models of two-dimensional quantum lattice systems with continuous symmetries, and we prove a general McBryan–Spencer–Koma–Tasaki theorem concerning algebraic decay of…
Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory
- Physics
- 1992
The subject of this book is equilibrium statistical mechanics, in particular the theory of critical phenomena, and quantum field theory. The central theme is the use of random-walk representations as…
Universal behaviour of 3D loop soup models
- Physics
- 2017
These notes describe several loop soup models and their {\it universal behaviour} in dimensions greater or equal to 3. These loop models represent certain classical or quantum statistical mechanical…